已知, ΔABC 为直角三角形, ∠ ACB = 90 ° ,点 P 是射线 CB 上一点(点 P 不与点 B 、 C 重合),线段 AP 绕点 A 顺时针旋转 90 ° 得到线段 AQ ,连接 QB 交射线 AC 于点 M .
(1)如图①,当 AC = BC ,点 P 在线段 CB 上时,线段 PB 、 CM 的数量关系是 ;
(2)如图②,当 AC = BC ,点 P 在线段 CB 的延长线时,(1)中的结论是否成立?若成立,写出证明过程;若不成立,请说明理由.
(3)如图③,若 AC BC = 5 2 ,点 P 在线段 CB 的延长线上, CM = 2 , AP = 13 ,求 ΔABP 的面积.
在□ABCD中,E、F分别为对角线BD上的两点,且BE=DF. (1)试说明四边形AECF的平行四边形; (2)试说明∠DAF与∠BCE相等.
在如图的方格纸中(每个小方格的边长都是1个单位)有一个格点△ABC, (1)求出△ABC的边长,并判断△ABC是否为直角三角形; (2)画出△ABC关于点的中心对称图形△A1B1C1; (3)画出△ABC绕点O按顺时针方向旋转90°后得到的图形△A2B2C2; (4)△A1B1C1可能由△A2B2C2怎样变换得到? (写出你认为正确的一种即可).
如图,有多个长方形和正方形的卡片,图甲是选取了2块不同的卡片,拼成的一个图形,借助图中阴影部分面积的不同表示可以用来验证等式成立. (1)根据图乙,利用面积的不同表示方法,写出一个代数恒等式 ; (2)试写出一个与(1)中代数恒等式类似的等式,并用上述拼图的方法说明它的正确性.
分解因式:
分解因式:-a+2a-a