在中,,点在以为直径的半圆内.请仅用无刻度的直尺分别按下列要求画图(保留画图痕迹).
(1)在图1中作弦,使;
(2)在图2中以为边作一个的圆周角.
我们定义:如图1,在中,把绕点顺时针旋转得到,把绕点逆时针旋转得到,连接.当时,我们称△是的“旋补三角形”,△ 边上的中线叫做的“旋补中线”,点叫做“旋补中心”.
特例感知:
(1)在图2,图3中,△是的“旋补三角形”, 是的“旋补中线”.
①如图2,当为等边三角形时,与的数量关系为 ;
②如图3,当,时,则长为 .
猜想论证:
(2)在图1中,当为任意三角形时,猜想与的数量关系,并给予证明.
拓展应用
(3)如图4,在四边形,,,,,.在四边形内部是否存在点,使是的“旋补三角形”?若存在,给予证明,并求的“旋补中线”长;若不存在,说明理由.
如图1,的直径,是弦上一动点(与点,不重合),,过点作交于点.
(1)如图2,当时,求的长;
(2)如图3,当时,延长至点,使,连接.
①求证:是的切线;
②求的长.
在中,,.点是平面内不与点,重合的任意一点.连接,将线段绕点逆时针旋转得到线段,连接,,.
(1)观察猜想
如图1,当时,的值是 ,直线与直线相交所成的较小角的度数是 .
(2)类比探究
如图2,当时,请写出的值及直线与直线相交所成的较小角的度数,并就图2的情形说明理由.
(3)解决问题
当时,若点,分别是,的中点,点在直线上,请直接写出点,,在同一直线上时的值.
如图,在中,,,以为直径的半圆交于点,点是上不与点,重合的任意一点,连接交于点,连接并延长交于点.
(1)求证:;
(2)填空:
①若,且点是的中点,则的长为 ;
②取的中点,当的度数为 时,四边形为菱形.
如图,抛物线交轴于,两点,交轴于点.直线经过点,.
(1)求抛物线的解析式;
(2)过点的直线交直线于点.
①当时,过抛物线上一动点(不与点,重合),作直线的平行线交直线于点,若以点,,,为顶点的四边形是平行四边形,求点的横坐标;
②连接,当直线与直线的夹角等于的2倍时,请直接写出点的坐标.
(1)问题发现
如图1,在和中,,,,连接,交于点.填空:
①的值为 ;
②的度数为 .
(2)类比探究
如图2,在和中,,,连接交的延长线于点.请判断的值及的度数,并说明理由;
(3)拓展延伸
在(2)的条件下,将绕点在平面内旋转,,所在直线交于点,若,,请直接写出当点与点重合时的长.
如图,是的直径,于点,连接交于点,过点作的切线交于点,连接交于点.
(1)求证:;
(2)连接并延长,交于点.填空:
①当的度数为 时,四边形为菱形;
②当的度数为 时,四边形为正方形.
如图,抛物线交轴于、两点,交轴于点,顶点的坐标为,对称轴交轴于点,直线交轴于点,交轴于点,交抛物线的对称轴于点.
(1)求出,,的值.
(2)点为抛物线对称轴上一个动点,若是以为腰的等腰三角形时,请求出点的坐标.
(3)点为抛物线上一个动点,当点关于直线的对称点恰好落在轴上时,请直接写出此时点的坐标.
探究
(1)如图①,在等腰直角三角形中,,作平分交于点,点为射线上一点,以点为旋转中心将线段逆时针旋转得到线段,连接交射线于点,连接、
填空:
①线段、的数量关系为 .
②线段、的位置关系为 .
推广:
(2)如图②,在等腰三角形中,顶角,作平分交于点,点为外部射线上一点,以点为旋转中心将线段逆时针旋转度得到线段,连接、、请判断(1)中的结论是否成立,并说明理由.
应用:
(3)如图③,在等边三角形中,.作平分交于点,点为射线上一点,以点为旋转中心将线段逆时针旋转得到线段,连接交射线于点,连接、.当以、、为顶点的三角形与全等时,请直接写出的值.
如图1,在中,,,点,分别在边,上,,连接,点,,分别为,,的中点.
(1)观察猜想:图1中,线段与的数量关系是 ,位置关系是 ;
(2)探究证明:把绕点逆时针方向旋转到图2的位置,连接,,,判断的形状,并说明理由;
(3)拓展延伸:把绕点在平面内自由旋转,若,,请直接写出面积的最大值.
如图,在中,,以为直径的交边于点,过点作,与过点的切线交于点,连接.
(1)求证:;
(2)若,,求的长.
如图,在等边三角形中,,点,分别是边,的中点,点,同时沿射线的方向以相同的速度运动,某一时刻分别运动到点,处,连接,,,.
(1)写出图1中的一对全等三角形;
(2)如图2所示,当点在线段延长线上时,画出示意图,判断(1)中所写的一对三角形是否仍然全等,并说明理由;
(3)在点运动的过程中,若是直角三角形,直接写出此时线段的长度.
如图,为半圆的直径,点为半圆上任一点.
(1)若,过点作半圆的切线交直线于点.求证:;
(2)若,过点作的平行线交半圆于点.当以点,,,为顶点的四边形为菱形时,求的长.