在ΔABC中,CA=CB,∠ACB=α.点P是平面内不与点A,C重合的任意一点.连接AP,将线段AP绕点P逆时针旋转α得到线段DP,连接AD,BD,CP.
(1)观察猜想
如图1,当α=60°时,BDCP的值是 ,直线BD与直线CP相交所成的较小角的度数是 .
(2)类比探究
如图2,当α=90°时,请写出BDCP的值及直线BD与直线CP相交所成的较小角的度数,并就图2的情形说明理由.
(3)解决问题
当α=90°时,若点E,F分别是CA,CB的中点,点P在直线EF上,请直接写出点C,P,D在同一直线上时ADCP的值.
如图所示的平面直角坐标系中, 将△ABC平移后得到△DEF.已知B点平移的对应点E点(0,-3)(A点与D点对应,C点与F点对应). (1)△ABC的面积为 ; (2)画出平移后的△DEF,并写出点D的坐标为,点F的坐标为; (3)若线段DF交y轴于P, 则点P的坐标为.
武汉轻轨一号线开通后学生上学大为便捷.为了了解学生上学所用的交通工具的乘坐情况,在全校学生中进行随机抽样调查,并根据收集的数据绘制了下面两幅统计图(信息尚不完整),请根据图中提供的信息,解答下面的问题: (1)此次共调查了名同学; (2)将条形图补充完整,并计算扇形统计图中公交车部分的圆心角的度数; (3)如果全校共有1000名学生,估计该校乘坐轻轨上学的学生有 人.
解不等式≤并在数轴上表示其解集.
解方程组 (1) (2)
(本题12分)平面直角坐标系中,直线l1:与x轴交于点A,与y轴交于点B,直线l2:与x轴交于点C,与直线l1交于点P. (1)当k=1时,求点P的坐标; (2)如图1,点D为PA的中点,过点D作DE⊥x轴于E,交直线l2于点F,若DF=2DE,求k的值; (3)如图2,点P在第二象限内,PM⊥x轴于M,以PM为边向左作正方形PMNQ,NQ的延长线交直线l1于点R,若PR=PC,求点P的坐标.