(1)问题发现
如图1,在ΔOAB和ΔOCD中,OA=OB,OC=OD,∠AOB=∠COD=40°,连接AC,BD交于点M.填空:
①ACBD的值为 ;
②∠AMB的度数为 .
(2)类比探究
如图2,在ΔOAB和ΔOCD中,∠AOB=∠COD=90°,∠OAB=∠OCD=30°,连接AC交BD的延长线于点M.请判断ACBD的值及∠AMB的度数,并说明理由;
(3)拓展延伸
在(2)的条件下,将ΔOCD绕点O在平面内旋转,AC,BD所在直线交于点M,若OD=1,OB=7,请直接写出当点C与点M重合时AC的长.
如图,点D是△ABC的边AC上的一点,AB2=AC·AD.求证:△ADB∽△ABC.
如图,在平面直角坐标系xOy中,已知点B的坐标为(2,0),点C的坐标为(0,8),sin∠CAB=, E是线段AB上的一个动点(与点A、点B不重合),过点E作EF∥AC交BC于点F,连结CE. (1)求AC和OA的长; (2)设AE的长为m,△CEF的面积为S,求S与m之间的函数关系式; (3)在(2)的条件下试说明S是否存在最大值,若存在,请求出S的最大值,并求出此 时点E的坐标,判断此时△BCE的形状;若不存在,请说明理由.
如图,在Rt△ABC中,∠C = 90°,BC=9,CA=12,∠ABC的平分线BD交AC于点D, DE⊥DB交AB于点E. 点O在AB上,⊙O是△BDE的外接圆,交BC于点F,连结EF.求的值.
某大型超市为了缓解停车难的问题,建筑设计师提供了楼顶停车场的设计示意图(如图AC与ME平行).按规定,停车场坡道口上坡要张贴限高标志,以便告知车辆能否安全驶入.请根据下图求出汽车通过坡道口的限高DF的长.(结果精确到0.1m) (参考数据: sin28°≈0.47,cos28°≈0.88, tan28°≈0.53)
如图,M是的中点,过点M的弦MN交弦AB于点C,⊙O的半径为4cm,MN=4cm. (1)求圆心O到弦MN的距离;(2)求∠ACM的度数.