(1)问题发现
如图1,在ΔOAB和ΔOCD中,OA=OB,OC=OD,∠AOB=∠COD=40°,连接AC,BD交于点M.填空:
①ACBD的值为 ;
②∠AMB的度数为 .
(2)类比探究
如图2,在ΔOAB和ΔOCD中,∠AOB=∠COD=90°,∠OAB=∠OCD=30°,连接AC交BD的延长线于点M.请判断ACBD的值及∠AMB的度数,并说明理由;
(3)拓展延伸
在(2)的条件下,将ΔOCD绕点O在平面内旋转,AC,BD所在直线交于点M,若OD=1,OB=7,请直接写出当点C与点M重合时AC的长.
如图,AB为半圆O的直径,点C在半圆上,CD⊥AB于点D,连结BC,作∠BCP=∠BCD,CP交AB延长线于点P. (1)求证:PC是半圆O的切线; (2)求证:PC2=PB•PA; (3)若PC=2,tan∠BCD=,求的长.
如图,抛物线与轴交于A(﹣2,0),B(6,0)两点. (1)求该抛物线的解析式; (2)求该抛物线的对称轴以及顶点坐标; (3)点P为y轴右侧抛物线上一个动点,若S△PAB=32,求出此时P点的坐标.
如图,正方形ABCD中,点F在AD上,点E在AB的延长线上,∠FCE=90°. (1)求证:△CDF≌△CBE. (2)若CD=8.EF=10.求∠DCF的余弦值.
如图,在Rt△ABC中,∠C=90°. (1)根据要求用尺规作图:过点C作斜边AB边上的高CD,垂足为D(不写作法,只保留作图痕迹); (2)在(1)的条件下,请写出图中所有与△ABC相似的三角形.
解不等式组.