初中数学

如图,矩形 OABC 的两边在坐标轴上,点 A 的坐标为 ( 10 , 0 ) ,抛物线 y = a x 2 + bx + 4 过点 B C 两点,且与 x 轴的一个交点为 D ( - 2 , 0 ) ,点 P 是线段 CB 上的动点,设 CP = t ( 0 < t < 10 )

(1)请直接写出 B C 两点的坐标及抛物线的解析式;

(2)过点 P PE BC ,交抛物线于点 E ,连接 BE ,当 t 为何值时, PBE = OCD

(3)点 Q x 轴上的动点,过点 P PM / / BQ ,交 CQ 于点 M ,作 PN / / CQ ,交 BQ 于点 N ,当四边形 PMQN 为正方形时,请求出 t 的值.

来源:2017年湖北省襄阳市中考数学试卷
  • 更新:2021-05-22
  • 题型:未知
  • 难度:未知

已知直线 y = 1 2 x + 2 分别交 x 轴、 y 轴于 A B 两点,抛物线 y = 1 2 x 2 + mx 2 经过点 A ,和 x 轴的另一个交点为 C

(1)求抛物线的解析式;

(2)如图1,点 D 是抛物线上的动点,且在第三象限,求 ΔABD 面积的最大值;

(3)如图2,经过点 M ( 4 , 1 ) 的直线交抛物线于点 P Q ,连接 CP CQ 分别交 y 轴于点 E F ,求 OE · OF 的值.

备注:抛物线顶点坐标公式 ( b 2 a 4 ac b 2 4 a )

来源:2018年黑龙江省绥化市中考数学试卷
  • 更新:2021-05-20
  • 题型:未知
  • 难度:未知

如图,抛物线 y = a x 2 + bx + c 经过 A ( - 1 , 0 ) B ( 4 , 0 ) C ( 0 , 2 ) 三点,点 D ( x , y ) 为抛物线上第一象限内的一个动点.

(1)求抛物线所对应的函数表达式;

(2)当 ΔBCD 的面积为3时,求点 D 的坐标;

(3)过点 D DE BC ,垂足为点 E ,是否存在点 D ,使得 ΔCDE 中的某个角等于 ABC 的2倍?若存在,求点 D 的横坐标;若不存在,请说明理由.

出关于 x 的一元二次方程,解之取其非零值可得出点 D 的横坐标.依此即可得解.

来源:2020年四川省内江市中考数学试卷
  • 更新:2021-05-21
  • 题型:未知
  • 难度:未知

抛物线 y = x 2 + bx + c x 轴交于 A ( 1 , 0 ) B ( m , 0 ) ,与 y 轴交于 C

(1)若 m = - 3 ,求抛物线的解析式,并写出抛物线的对称轴;

(2)如图1,在(1)的条件下,设抛物线的对称轴交 x 轴于 D ,在对称轴左侧的抛物线上有一点 E ,使 S ΔACE = 10 3 S ΔACD ,求点 E 的坐标;

(3)如图2,设 F ( - 1 , - 4 ) FG y 轴于 G ,在线段 OG 上是否存在点 P ,使 OBP = FPG ?若存在,求 m 的取值范围;若不存在,请说明理由.

来源:2017年湖北省十堰市中考数学试卷
  • 更新:2021-05-21
  • 题型:未知
  • 难度:未知

如图,抛物线 y = a x 2 + bx + c ( a 0 ) 的图象经过 A ( 1 , 0 ) B ( 3 , 0 ) C ( 0 , 6 ) 三点.

(1)求抛物线的解析式.

(2)抛物线的顶点 M 与对称轴 l 上的点 N 关于 x 轴对称,直线 AN 交抛物线于点 D ,直线 BE AD 于点 E ,若直线 BE ΔABD 的面积分为 1 : 2 两部分,求点 E 的坐标.

(3) P 为抛物线上的一动点, Q 为对称轴上动点,抛物线上是否存在一点 P ,使 A D P Q 为顶点的四边形为平行四边形?若存在,求出点 P 的坐标;若不存在,请说明理由.

来源:2020年四川省遂宁市中考数学试卷
  • 更新:2021-05-21
  • 题型:未知
  • 难度:未知

已知点 A ( - 1 , 1 ) B ( 4 , 6 ) 在抛物线 y = a x 2 + bx 上,

(1)求抛物线的解析式;

(2)如图1,点 F 的坐标为 ( 0 m ) ( m > 2 ) ,直线 AF 交抛物线于另一点 G ,过点 G x 轴的垂线,垂足为 H .设抛物线与 x 轴的正半轴交于点 E ,连接 FH AE ,求证: FH / / AE

(3)如图2,直线 AB 分别交 x 轴、 y 轴于 C D 两点.点 P 从点 C 出发,沿射线 CD 方向匀速运动,速度为每秒 2 个单位长度;同时点 Q 从原点 O 出发,沿 x 轴正方向匀速运动,速度为每秒1个单位长度.点 M 是直线 PQ 与抛物线的一个交点,当运动到 t 秒时, QM = 2 PM ,直接写出 t 的值.

来源:2017年湖北省武汉市中考数学试卷
  • 更新:2021-05-21
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系 xOy 中,直线 y = kx + 3 分别交 x 轴、 y 轴于 A B 两点,经过 A B 两点的抛物线 y = - x 2 + bx + c x 轴的正半轴相交于点 C ( 1 , 0 )

(1)求抛物线的解析式;

(2)若 P 为线段 AB 上一点, APO = ACB ,求 AP 的长;

(3)在(2)的条件下,设 M y 轴上一点,试问:抛物线上是否存在点 N ,使得以 A P M N 为顶点的四边形为平行四边形?若存在,求出点 N 的坐标;若不存在,请说明理由.

来源:2020年四川省甘孜州中考数学试卷
  • 更新:2021-05-21
  • 题型:未知
  • 难度:未知

如图,抛物线 y = x 2 + bx + c x 轴于 A B 两点,其中点 A 坐标为 ( 1 , 0 ) ,与 y 轴交于点 C ( 0 , - 3 )

(1)求抛物线的函数表达式;

(2)如图①,连接 AC ,点 P 在抛物线上,且满足 PAB = 2 ACO .求点 P 的坐标;

(3)如图②,点 Q x 轴下方抛物线上任意一点,点 D 是抛物线对称轴与 x 轴的交点,直线 AQ BQ 分别交抛物线的对称轴于点 M N .请问 DM + DN 是否为定值?如果是,请求出这个定值;如果不是,请说明理由.

来源:2019年江苏省宿迁市中考数学试卷
  • 更新:2021-05-21
  • 题型:未知
  • 难度:未知

如图,抛物线 y = x 2 + bx + c x 轴交于 A B 两点, B 点坐标为 ( 4 , 0 ) ,与 y 轴交于点 C ( 0 , 4 )

(1)求抛物线的解析式;

(2)点 P x 轴下方的抛物线上,过点 P 的直线 y = x + m 与直线 BC 交于点 E ,与 y 轴交于点 F ,求 PE + EF 的最大值;

(3)点 D 为抛物线对称轴上一点.

①当 ΔBCD 是以 BC 为直角边的直角三角形时,直接写出点 D 的坐标;

②若 ΔBCD 是锐角三角形,直接写出点 D 的纵坐标 n 的取值范围.

来源:2018年黑龙江省大庆市中考数学试卷
  • 更新:2021-05-20
  • 题型:未知
  • 难度:未知

综合与探究

如图1所示,直线 y = x + c x 轴交于点 A ( 4 , 0 ) ,与 y 轴交于点 C ,抛物线 y = x 2 + bx + c 经过点 A C

(1)求抛物线的解析式

(2)点 E 在抛物线的对称轴上,求 CE + OE 的最小值;

(3)如图2所示, M 是线段 OA 的上一个动点,过点 M 垂直于 x 轴的直线与直线 AC 和抛物线分别交于点 P N

①若以 C P N 为顶点的三角形与 ΔAPM 相似,则 ΔCPN 的面积为  

②若点 P 恰好是线段 MN 的中点,点 F 是直线 AC 上一个动点,在坐标平面内是否存在点 D ,使以点 D F P M 为顶点的四边形是菱形?若存在,请直接写出点 D 的坐标;若不存在,请说明理由.

注:二次函数 y = a x 2 + bx + c ( a 0 ) 的顶点坐标为 ( b 2 a 4 ac b 2 4 a )

来源:2018年黑龙江省大兴安岭中考数学试卷
  • 更新:2021-05-20
  • 题型:未知
  • 难度:未知

在平面直角坐标系 xOy 中,抛物线 y = - 1 4 x 2 + bx + c 经过点 A ( - 2 , 0 ) B ( 8 , 0 )

(1)求抛物线的解析式;

(2)点 C 是抛物线与 y 轴的交点,连接 BC ,设点 P 是抛物线上在第一象限内的点, PD BC ,垂足为点 D

①是否存在点 P ,使线段 PD 的长度最大?若存在,请求出点 P 的坐标;若不存在,请说明理由;

②当 ΔPDC ΔCOA 相似时,求点 P 的坐标.

来源:2018年新疆乌鲁木齐市中考数学试卷
  • 更新:2021-05-21
  • 题型:未知
  • 难度:未知

如图所示,二次函数 y = k ( x - 1 ) 2 + 2 的图象与一次函数 y = kx - k + 2 的图象交于 A B 两点,点 B 在点 A 的右侧,直线 AB 分别与 x y 轴交于 C D 两点,其中 k < 0

(1)求 A B 两点的横坐标;

(2)若 ΔOAB 是以 OA 为腰的等腰三角形,求 k 的值;

(3)二次函数图象的对称轴与 x 轴交于点 E ,是否存在实数 k ,使得 ODC = 2 BEC ,若存在,求出 k 的值;若不存在,说明理由.

来源:2019年江苏省盐城市中考数学试卷
  • 更新:2021-05-21
  • 题型:未知
  • 难度:未知

如图,已知抛物线 y = a x 2 + c 过点 ( - 2 , 2 ) ( 4 , 5 ) ,过定点 F ( 0 , 2 ) 的直线 l : y = kx + 2 与抛物线交于 A B 两点,点 B 在点 A 的右侧,过点 B x 轴的垂线,垂足为 C

(1)求抛物线的解析式;

(2)当点 B 在抛物线上运动时,判断线段 BF BC 的数量关系 ( > < = ) ,并证明你的判断;

(3) P y 轴上一点,以 B C F P 为顶点的四边形是菱形,设点 P ( 0 , m ) ,求自然数 m 的值;

(4)若 k = 1 ,在直线 l 下方的抛物线上是否存在点 Q ,使得 ΔQBF 的面积最大?若存在,求出点 Q 的坐标及 ΔQBF 的最大面积;若不存在,请说明理由.

来源:2017年湖北省恩施州中考数学试卷
  • 更新:2021-05-21
  • 题型:未知
  • 难度:未知

如图,已知抛物线 L : y = x 2 + bx + c 经过点 A ( 0 , - 5 ) B ( 5 , 0 )

(1)求 b c 的值;

(2)连结 AB ,交抛物线 L 的对称轴于点 M

①求点 M 的坐标;

②将抛物线 L 向左平移 m ( m > 0 ) 个单位得到抛物线 L 1 .过点 M MN / / y 轴,交抛物线 L 1 于点 N P 是抛物线 L 1 上一点,横坐标为 - 1 ,过点 P PE / / x 轴,交抛物线 L 于点 E ,点 E 在抛物线 L 对称轴的右侧.若 PE + MN = 10 ,求 m 的值.

来源:2021年浙江省丽水市中考数学试卷
  • 更新:2021-08-18
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系 xOy 中,已知 A B 两点的坐标分别为 ( 4 , 0 ) ( 4 , 0 ) C ( m , 0 ) 是线段 AB 上一点(与 A B 点不重合),抛物线 L 1 : y = a x 2 + b 1 x + c 1 ( a < 0 ) 经过点 A C ,顶点为 D ,抛物线 L 2 : y = a x 2 + b 2 x + c 2 ( a < 0 ) 经过点 C B ,顶点为 E AD BE 的延长线相交于点 F

(1)若 a = 1 2 m = 1 ,求抛物线 L 1 L 2 的解析式;

(2)若 a = 1 AF BF ,求 m 的值;

(3)是否存在这样的实数 a ( a < 0 ) ,无论 m 取何值,直线 AF BF 都不可能互相垂直?若存在,请直接写出 a 的两个不同的值;若不存在,请说明理由.

来源:2017年浙江省湖州市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

初中数学二次函数综合题试题