如图,已知抛物线 y = a x 2 + c 过点 ( - 2 , 2 ) , ( 4 , 5 ) ,过定点 F ( 0 , 2 ) 的直线 l : y = kx + 2 与抛物线交于 A 、 B 两点,点 B 在点 A 的右侧,过点 B 作 x 轴的垂线,垂足为 C .
(1)求抛物线的解析式;
(2)当点 B 在抛物线上运动时,判断线段 BF 与 BC 的数量关系 ( > 、 < 、 = ) ,并证明你的判断;
(3) P 为 y 轴上一点,以 B 、 C 、 F 、 P 为顶点的四边形是菱形,设点 P ( 0 , m ) ,求自然数 m 的值;
(4)若 k = 1 ,在直线 l 下方的抛物线上是否存在点 Q ,使得 ΔQBF 的面积最大?若存在,求出点 Q 的坐标及 ΔQBF 的最大面积;若不存在,请说明理由.
如图所示,已知AB∥CD,∠B=140°,∠D=150°,求∠E的度数.
如图所示,AB∥DC,AD∥BC,问:∠A与∠C有怎样的大小关系?为什么?
(1)如图所示,b⊥a,c⊥a,请判断b与c的位置关系. (2)用一句话总结(1)中所包含的规律.
如图所示,小东和小明分别在河的两岸,他们想知道河的两岸EF和MN是否平行,每人拿来了一个测角仪和两根标杆,那么就现有的条件,小东和小明能否判断河的两岸EF和MN平行?说说你的方案.
如图所示,一辆汽车在笔直的公路上行驶.第一次向左拐45°,再在笔直的公路上行驶一段距离后,第二次向右拐45°,请判断这辆汽车行驶的方向是否和原来的方向相同?为什么?