初中数学

如图,已知二次函数 y 1 = a x 2 + bx ( 2 , 4 ) ( 4 , 4 ) 两点.

(1)求二次函数 y 1 的解析式;

(2)将 y 1 沿 x 轴翻折,再向右平移2个单位,得到抛物线 y 2 ,直线 y = m ( m > 0 ) y 2 M N 两点,求线段 MN 的长度(用含 m 的代数式表示);

(3)在(2)的条件下, y 1 y 2 交于 A B 两点,如果直线 y = m y 1 y 2 的图象形成的封闭曲线交于 C D 两点 ( C 在左侧),直线 y = m y 1 y 2 的图象形成的封闭曲线交于 E F 两点 ( E 在左侧),求证:四边形 CEFD 是平行四边形.

来源:2016年四川省宜宾市中考数学试卷
  • 更新:2021-04-23
  • 题型:未知
  • 难度:未知

已知,抛物线 y = x 2 + bx + c 经过点 A ( 0 , 3 ) B ( 5 , 8 )

(1)求抛物线 y = x 2 + bx + c 的解析式和顶点坐标;

(2)知图1,连接 AB ,在 x 轴上确定一点 C ,使得 ABC = 90 ° ,求出点 C 的坐标;

(3)将抛物线 y = x 2 + bx + c 向左平移2个单位长度,再向上平移1个单位长度,得到抛物线 y = a x 2 + mx + n ,直线 y = kx + 2 ( k > 0 ) 与抛物线 y = a x 2 + mx + n 交于点 E ( x 1 y 1 ) F ( x 2 y 2 ) ( x 1 < x 2 ) ,连接 OE OF ,若 S ΔEOF = = 3 ,在图2中画出平面直角坐标系并求 k

来源:2016年四川省遂宁市中考数学试卷
  • 更新:2021-04-23
  • 题型:未知
  • 难度:未知

如图,抛物线 y = x 2 + bx + c x 轴交于 A B 两点, B 点坐标为 ( 3 , 0 ) ,与 y 轴交于点 C ( 0 , 3 )

(1)求抛物线的解析式;

(2)点 P 在抛物线位于第四象限的部分上运动,当四边形 ABPC 的面积最大时,求点 P 的坐标和四边形 ABPC 的最大面积.

(3)直线 l 经过 A C 两点,点 Q 在抛物线位于 y 轴左侧的部分上运动,直线 m 经过点 B 和点 Q ,是否存在直线 m ,使得直线 l m x 轴围成的三角形和直线 l m y 轴围成的三角形相似?若存在,求出直线 m 的解析式,若不存在,请说明理由.

来源:2016年四川省攀枝花市中考数学试卷
  • 更新:2021-04-23
  • 题型:未知
  • 难度:未知

已知抛物线 C : y = x 2 3 x + m ,直线 l : y = kx ( k > 0 ) ,当 k = 1 时,抛物线 C 与直线 l 只有一个公共点.

(1)求 m 的值;

(2)若直线 l 与抛物线 C 交于不同的两点 A B ,直线 l 与直线 l 1 : y = 3 x + b 交于点 P ,且 1 OA + 1 OB = 2 OP ,求 b 的值;

(3)在(2)的条件下,设直线 l 1 y 轴交于点 Q ,问:是否在实数 k 使 S ΔAPQ = S ΔBPQ ?若存在,求 k 的值,若不存在,说明理由.

来源:2016年四川省内江市中考数学试卷
  • 更新:2021-04-23
  • 题型:未知
  • 难度:未知

如图,抛物线与 x 轴交于点 A ( 5 , 0 ) 和点 B ( 3 , 0 ) .与 y 轴交于点 C ( 0 , 5 ) .有一宽度为1,长度足够的矩形(阴影部分)沿 x 轴方向平移,与 y 轴平行的一组对边交抛物线于点 P Q ,交直线 AC 于点 M N .交 x 轴于点 E F

(1)求抛物线的解析式;

(2)当点 M N 都在线段 AC 上时,连接 MF ,如果 sin AMF = 10 10 ,求点 Q 的坐标;

(3)在矩形的平移过程中,当以点 P Q M N 为顶点的四边形是平行四边形时,求点 M 的坐标.

来源:2016年四川省南充市中考数学试卷
  • 更新:2021-04-23
  • 题型:未知
  • 难度:未知

如图,抛物线 y = a x 2 + bx + c ( a 0 ) x 轴交于 A B 两点,与 y 轴交于点 C ( 0 , 3 ) ,且此抛物线的顶点坐标为 M ( 1 , 4 )

(1)求此抛物线的解析式;

(2)设点 D 为已知抛物线对称轴上的任意一点,当 ΔACD ΔACB 面积相等时,求点 D 的坐标;

(3)点 P 在线段 AM 上,当 PC y 轴垂直时,过点 P x 轴的垂线,垂足为 E ,将 ΔPCE 沿直线 CE 翻折,使点 P 的对应点 P ' P E C 处在同一平面内,请求出点 P ' 坐标,并判断点 P ' 是否在该抛物线上.

来源:2016年四川省绵阳市中考数学试卷
  • 更新:2021-04-23
  • 题型:未知
  • 难度:未知

已知如图,在平面直角坐标系 xOy 中,点 A B C 分别为坐标轴上的三个点,且 OA = 1 OB = 3 OC = 4

(1)求经过 A B C 三点的抛物线的解析式;

(2)在平面直角坐标系 xOy 中是否存在一点 P ,使得以点 A B C P 为顶点的四边形为菱形?若存在,请求出点 P 的坐标;若不存在,请说明理由;

(3)若点 M 为该抛物线上一动点,在(2)的条件下,请求出当 | PM AM | 的最大值时点 M 的坐标,并直接写出 | PM AM | 的最大值.

来源:2016年四川省眉山市中考数学试卷
  • 更新:2021-04-23
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,点 O 为坐标原点,直线 l 与抛物线 y = m x 2 + nx 相交于 A ( 1 3 3 ) B ( 4 , 0 ) 两点.

(1)求出抛物线的解析式;

(2)在坐标轴上是否存在点 D ,使得 ΔABD 是以线段 AB 为斜边的直角三角形?若存在,求出点 D 的坐标;若不存在,说明理由;

(3)点 P 是线段 AB 上一动点,(点 P 不与点 A B 重合),过点 P PM / / OA ,交第一象限内的抛物线于点 M ,过点 M MC x 轴于点 C ,交 AB 于点 N ,若 ΔBCN ΔPMN 的面积 S ΔBCN S ΔPMN 满足 S ΔBCN = 2 S ΔPMN ,求出 MN NC 的值,并求出此时点 M 的坐标.

来源:2016年四川省泸州市中考数学试卷
  • 更新:2021-04-23
  • 题型:未知
  • 难度:未知

如图,已知抛物线 y = a x 2 + bx + c ( a 0 ) 经过 A ( 1 , 0 ) B ( 3 , 0 ) C ( 0 , 3 ) 三点,直线 l 是抛物线的对称轴.

(1)求抛物线的函数关系式;

(2)设点 P 是直线 l 上的一个动点,当点 P 到点 A 、点 C 的距离之和最短时,求点 P 的坐标;

(3)点 M 也是直线 l 上的动点,且 ΔMAC 为等腰三角形,请直接写出所有符合条件的点 M 的坐标.

来源:2016年四川省凉山州中考数学试卷
  • 更新:2021-04-23
  • 题型:未知
  • 难度:未知

在直角坐标系 xOy 中, A ( 0 , 2 ) B ( 1 , 0 ) ,将 ΔABO 经过旋转、平移变化后得到如图1所示的 ΔBCD

(1)求经过 A B C 三点的抛物线的解析式;

(2)连接 AC ,点 P 是位于线段 BC 上方的抛物线上一动点,若直线 PC ΔABC 的面积分成 1 : 3 两部分,求此时点 P 的坐标;

(3)现将 ΔABO ΔBCD 分别向下、向左以 1 : 2 的速度同时平移,求出在此运动过程中 ΔABO ΔBCD 重叠部分面积的最大值.

来源:2016年四川省乐山市中考数学试卷
  • 更新:2021-04-23
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,已知抛物线 y = a x 2 + bx + c x 轴交于 A ( 5 , 0 ) B ( 1 , 0 ) 两点,与 y 轴交于点 C ( 0 , 5 2 )

(1)求抛物线的解析式;

(2)在抛物线上是否存在点 P ,使得 ΔACP 是以点 A 为直角顶点的直角三角形?若存在,求出符合条件的点 P 的坐标;若不存在,请说明理由;

(3)点 G 为抛物线上的一动点,过点 G GE 垂直于 y 轴于点 E ,交直线 AC 于点 D ,过点 D x 轴的垂线,垂足为点 F ,连接 EF ,当线段 EF 的长度最短时,求出点 G 的坐标.

来源:2016年四川省广元市中考数学试卷
  • 更新:2021-04-23
  • 题型:未知
  • 难度:未知

如图,抛物线 y = x 2 + bx + c 与直线 y = 1 2 x 3 交于 A B 两点,其中点 A y 轴上,点 B 坐标为 ( 4 , 5 ) ,点 P y 轴左侧的抛物线上一动点,过点 P PC x 轴于点 C ,交 AB 于点 D

(1)求抛物线的解析式;

(2)以 O A P D 为顶点的平行四边形是否存在?如存在,求点 P 的坐标;若不存在,说明理由.

(3)当点 P 运动到直线 AB 下方某一处时,过点 P PM AB ,垂足为 M ,连接 PA 使 ΔPAM 为等腰直角三角形,请直接写出此时点 P 的坐标.

来源:2016年四川省广安市中考数学试卷
  • 更新:2021-04-23
  • 题型:未知
  • 难度:未知

如图,抛物线 y = a x 2 ( 2 a + 1 ) x + b 的图象经过 ( 2 , 1 ) ( 2 , 7 ) 且与直线 y = kx 2 k 3 相交于点 P ( m , 2 m 7 )

(1)求抛物线的解析式;

(2)求直线 y = kx 2 k 3 与抛物线 y = a x 2 ( 2 a + 1 ) x + b 的对称轴的交点 Q 的坐标;

(3)在 y 轴上是否存在点 T ,使 ΔPQT 的一边中线等于该边的一半?若存在,求出点 T 的坐标;若不存在请说明理由.

来源:2016年四川省德阳市中考数学试卷
  • 更新:2021-04-23
  • 题型:未知
  • 难度:未知

如图,已知抛物线 y = a x 2 + 2 x + 6 ( a 0 ) x 轴与 A B 两点(点 A 在点 B 左侧),将直尺 WXYZ x 轴负方向成 45 ° 放置,边 WZ 经过抛物线上的点 C ( 4 , m ) ,与抛物线的另一交点为点 D ,直尺被 x 轴截得的线段 EF = 2 ,且 ΔCEF 的面积为6.

(1)求该抛物线的解析式;

(2)探究:在直线 AC 上方的抛物线上是否存在一点 P ,使得 ΔACP 的面积最大?若存在,请求出面积的最大值及此时点 P 的坐标;若不存在,请说明理由.

(3)将直尺以每秒2个单位的速度沿 x 轴向左平移,设平移的时间为 t 秒,平移后的直尺为 W ' X ' Y ' Z ' ,其中边 X ' Y ' 所在的直线与 x 轴交于点 M ,与抛物线的其中一个交点为点 N ,请直接写出当 t 为何值时,可使得以 C D M N 为顶点的四边形是平行四边形.

来源:2016年四川省达州市中考数学试卷
  • 更新:2021-04-23
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系 xOy 中,抛物线 y = a ( x + 1 ) 2 3 x 轴交于 A B 两点(点 A 在点 B 的左侧),与 y 轴交于点 C ( 0 , 8 3 ) ,顶点为 D ,对称轴与 x 轴交于点 H ,过点 H 的直线 l 交抛物线于 P Q 两点,点 Q y 轴的右侧.

(1)求 a 的值及点 A B 的坐标;

(2)当直线 l 将四边形 ABCD 分为面积比为 3 : 7 的两部分时,求直线 l 的函数表达式;

(3)当点 P 位于第二象限时,设 PQ 的中点为 M ,点 N 在抛物线上,则以 DP 为对角线的四边形 DMPN 能否为菱形?若能,求出点 N 的坐标;若不能,请说明理由.

来源:2016年四川省成都市中考数学试卷
  • 更新:2021-04-23
  • 题型:未知
  • 难度:未知

初中数学待定系数法求二次函数解析式解答题