如图,抛物线 y = x 2 + bx + c 与直线 y = 1 2 x − 3 交于 A 、 B 两点,其中点 A 在 y 轴上,点 B 坐标为 ( − 4 , − 5 ) ,点 P 为 y 轴左侧的抛物线上一动点,过点 P 作 PC ⊥ x 轴于点 C ,交 AB 于点 D .
(1)求抛物线的解析式;
(2)以 O , A , P , D 为顶点的平行四边形是否存在?如存在,求点 P 的坐标;若不存在,说明理由.
(3)当点 P 运动到直线 AB 下方某一处时,过点 P 作 PM ⊥ AB ,垂足为 M ,连接 PA 使 ΔPAM 为等腰直角三角形,请直接写出此时点 P 的坐标.
已知:如图∠ABC=30°,∠CBD=70°,BE是∠ABD的平分线,求∠DBE的度数.
解方程组:
化简:
小聪和小明沿同一条路同时从学校出发到新华书店查阅资料,学校到新华书店的路程 是4千米,小聪骑自行车,小明步行,当小聪从原路回到学校时,小明刚好到达新华书店,图中折线O-A -B-C和线段OD分别表示两人离学校的路程(千米)与所经过的时间(分钟)之间的函数关系,请根 据图象回答下列问题: (1)小聪在新华书店查阅资料的时间为________分钟,小聪返回学校的速度为_______千米/分钟. (2)请你求出小明离开学校的路程s(千米)与所经过的时间t(分钟)之间的函数关系; (3)当小聪与小明迎面相遇时,他们离学校的路程是多少千米?
如图所示,在四边形ABCD中,AD∥BC,E为CD的中点,连接AE、BE,BE⊥AE,延长AE交BC的延长线于点F. 求证:(1)FC=AD;(2)AB=BC+AD.