计算:
如图,在等腰三角形ABC中,∠ABC=90°,D为AC边上中点,过D点作DE⊥DF,交AB于E,交BC于F,若AE=4,FC=3,求EF长.
为了加强食品安全管理,有关部门对某大型超市的甲、乙两种品牌食用油共抽取18瓶进行检测,检测结果分成“优秀”、“合格”、“不合格”三个等级,数据处理后制成以下折线统计图和扇形统计图.⑴甲、乙两种品牌食用油各被抽取了多少瓶用于检测?⑵在该超市购买一瓶乙品牌食用油,请估计能买到“优秀”等级的概率是多少?
解方程: 2 x + x x + 3 = 1
如图,已知O是平面直角坐标系的原点,半径为1的⊙B经过点O,且与x、y轴分别交于点A、C,点A的坐标为(-,0),AC的延长线与⊙B的切线OD交于点D.(1)求OC的长和∠CAO的度数;(2)求点D的坐标;(3)求过点A,O,D三点的抛物线的解析式;(4)在(3)中,点P是抛物线上的一点,试确定点P的位置,使得△AOP的面积与△AOC的面积相等.
在△ABC中,BC=6,AC=4,∠C=45o,在BC上有一动点P,过P作PD∥BA与AC相交于点D,连结AP,设BP=x,△APD的面积为y. (1)求y与x之间的函数关系式,并指出自变量x的取值范围; (2)是否存在点P,使△APD的面积最大?若存在,求出BP的长,并求出 △APD面积的最大值.