如图,在平面直角坐标系中,点 O 为坐标原点,直线 l 与抛物线 y = m x 2 + nx 相交于 A ( 1 , 3 3 ) , B ( 4 , 0 ) 两点.
(1)求出抛物线的解析式;
(2)在坐标轴上是否存在点 D ,使得 ΔABD 是以线段 AB 为斜边的直角三角形?若存在,求出点 D 的坐标;若不存在,说明理由;
(3)点 P 是线段 AB 上一动点,(点 P 不与点 A 、 B 重合),过点 P 作 PM / / OA ,交第一象限内的抛物线于点 M ,过点 M 作 MC ⊥ x 轴于点 C ,交 AB 于点 N ,若 ΔBCN 、 ΔPMN 的面积 S ΔBCN 、 S ΔPMN 满足 S ΔBCN = 2 S ΔPMN ,求出 MN NC 的值,并求出此时点 M 的坐标.
如图所示,已知点D为等腰直角△ABC内一点,∠CAD=∠CBD=15°,E为AD延长线上的一点,且CE=CA. (1)求证:DE平分∠BDC; (2)若点M在DE上,且DC=DM,求证: ME=BD.
(10分)晓丽的家住在D处,每天她要送女儿到正东方向,距离家2500米外的幼儿园B处,然后沿原路返回到离家正西1500米C处上班,晓丽的工作单位的正北方向上有一家超市A.恰好晓丽家所在点D在公路AB、AC夹角的平分线上,你能求出晓丽的工作单位距离超市A有多远吗?
求证:等腰三角形底边上的中点到两腰上的距离相等.(要求画图,写已知,求证和证明)
已知:如图所示,CE⊥AB,BF⊥AC,CE与BF相交于D,且BD=CD. 求证:D在∠BAC的平分线上.
如图所示,在△ABC中,已知AB=AC,∠BAC=120°,AD⊥AC,DC=6求BD的长.