初中数学

如图,已知抛物线 y = x 2 + bx + c x 轴交于点 A ( 1 , 0 ) 和点 B ( 3 , 0 ) ,与 y 轴交于点 C ,连接 BC 交抛物线的对称轴于点 E D 是抛物线的顶点.

(1)求此抛物线的解析式;

(2)直接写出点 C 和点 D 的坐标;

(3)若点 P 在第一象限内的抛物线上,且 S ΔABP = 4 S ΔCOE ,求 P 点坐标.

注:二次函数 y = a x 2 + bx + c ( a 0 ) 的顶点坐标为 ( b 2 a 4 ac b 2 4 a )

来源:2017年黑龙江省大兴安岭中考数学试卷
  • 更新:2021-04-29
  • 题型:未知
  • 难度:未知

在平面直角坐标系中,二次函数 y = a x 2 + 5 3 x + c 的图象经过点 C ( 0 , 2 ) 和点 D ( 4 , 2 ) .点 E 是直线 y = 1 3 x + 2 与二次函数图象在第一象限内的交点.

(1)求二次函数的解析式及点 E 的坐标.

(2)如图①,若点 M 是二次函数图象上的点,且在直线 CE 的上方,连接 MC OE ME .求四边形 COEM 面积的最大值及此时点 M 的坐标.

(3)如图②,经过 A B C 三点的圆交 y 轴于点 F ,求点 F 的坐标.

来源:2018年贵州省遵义市中考数学试卷
  • 更新:2021-04-29
  • 题型:未知
  • 难度:未知

如图,已知抛物线经过点 A ( 1 , 0 ) B ( 4 , 0 ) C ( 0 , 2 ) 三点,点 D 与点 C 关于 x 轴对称,点 P x 轴上的一个动点,设点 P 的坐标为 ( m , 0 ) ,过点 P x 轴的垂线 l 交抛物线于点 Q ,交直线 BD 于点 M

(1)求该抛物线所表示的二次函数的表达式;

(2)已知点 F ( 0 , 1 2 ) ,当点 P x 轴上运动时,试求 m 为何值时,四边形 DMQF 是平行四边形?

(3)点 P 在线段 AB 运动过程中,是否存在点 Q ,使得以点 B Q M 为顶点的三角形与 ΔBOD 相似?若存在,求出点 Q 的坐标;若不存在,请说明理由.

来源:2018年贵州省铜仁市中考数学试卷
  • 更新:2021-04-29
  • 题型:未知
  • 难度:未知

如图,以 D 为顶点的抛物线 y = x 2 + bx + c x 轴于 A B 两点,交 y 轴于点 C ,直线 BC 的表达式为 y = x + 3

(1)求抛物线的表达式;

(2)在直线 BC 上有一点 P ,使 PO + PA 的值最小,求点 P 的坐标;

(3)在 x 轴上是否存在一点 Q ,使得以 A C Q 为顶点的三角形与 ΔBCD 相似?若存在,请求出点 Q 的坐标;若不存在,请说明理由.

来源:2018年贵州省毕节市中考数学试卷
  • 更新:2021-04-29
  • 题型:未知
  • 难度:未知

如图,已知抛物线 y = a x 2 + bx + c ( a 0 ) 的对称轴为直线 x = 1 ,且抛物线与 x 轴交于 A B 两点,与 y 轴交于 C 点,其中 A ( 1 , 0 ) C ( 0 , 3 )

(1)若直线 y = mx + n 经过 B C 两点,求直线 BC 和抛物线的解析式;

(2)在抛物线的对称轴 x = 1 上找一点 M ,使点 M 到点 A 的距离与到点 C 的距离之和最小,求出点 M 的坐标;

(3)设点 P 为抛物线的对称轴 x = 1 上的一个动点,求使 ΔBPC 为直角三角形的点 P 的坐标.

来源:2018年贵州省安顺市中考数学试卷
  • 更新:2021-04-27
  • 题型:未知
  • 难度:未知

如图,抛物线 y = a x 2 + bx a b ( a < 0 a b 为常数)与 x 轴交于 A C 两点,与 y 轴交于 B 点,直线 AB 的函数关系式为 y = 8 9 x + 16 3

(1)求该抛物线的函数关系式与 C 点坐标;

(2)已知点 M ( m , 0 ) 是线段 OA 上的一个动点,过点 M x 轴的垂线 l 分别与直线 AB 和抛物线交于 D E 两点,当 m 为何值时, ΔBDE 恰好是以 DE 为底边的等腰三角形?

(3)在(2)问条件下,当 ΔBDE 恰好是以 DE 为底边的等腰三角形时,动点 M 相应位置记为点 M ' ,将 OM ' 绕原点 O 顺时针旋转得到 ON (旋转角在 0 ° 90 ° 之间);

i .探究:线段 OB 上是否存在定点 P ( P 不与 O B 重合),无论 ON 如何旋转, NP NB 始终保持不变.若存在,试求出 P 点坐标;若不存在,请说明理由;

ii .试求出此旋转过程中, ( NA + 3 4 NB ) 的最小值.

来源:2017年贵州省遵义市中考数学试卷
  • 更新:2021-04-27
  • 题型:未知
  • 难度:未知

如图1,抛物线 y = a x 2 + bx + 7 4 ,经过 A ( 1 , 0 ) B ( 7 , 0 ) 两点,交 y 轴于 D 点,以 AB 为边在 x 轴上方作等边 ΔABC

(1)求抛物线的解析式;

(2)在 x 轴上方的抛物线上是否存在点 M ,是 S ΔABM = 4 3 9 S ΔABC ?若存在,请求出点 M 的坐标;若不存在,请说明理由;

(3)如图2, E 是线段 AC 上的动点, F 是线段 BC 上的动点, AF BE 相交于点 P

①若 CE = BF ,试猜想 AF BE 的数量关系及 APB 的度数,并说明理由;

②若 AF = BE ,当点 E A 运动到 C 时,请直接写出点 P 经过的路径长(不需要写过程).

来源:2017年贵州省黔西南州中考数学试卷
  • 更新:2021-04-27
  • 题型:未知
  • 难度:未知

如图,抛物线 y = x 2 + bx + c 经过点 A ( 1 , 0 ) B ( 0 , 2 ) ,并与 x 轴交于点 C ,点 M 是抛物线对称轴 l 上任意一点(点 M B C 三点不在同一直线上).

(1)求该抛物线所表示的二次函数的表达式;

(2)在抛物线上找出两点 P 1 P 2 ,使得△ M P 1 P 2 ΔMCB 全等,并求出点 P 1 P 2 的坐标;

(3)在对称轴上是否存在点 Q ,使得 BQC 为直角,若存在,作出点 Q (用尺规作图,保留作图痕迹),并求出点 Q 的坐标.

来源:2017年贵州省铜仁市中考数学试卷
  • 更新:2021-04-27
  • 题型:未知
  • 难度:未知

如图,已知直角坐标系中, A B D 三点的坐标分别为 A ( 8 , 0 ) B ( 0 , 4 ) D ( 1 , 0 ) ,点 C 与点 B 关于 x 轴对称,连接 AB AC

(1)求过 A B D 三点的抛物线的解析式;

(2)有一动点 E 从原点 O 出发,以每秒2个单位的速度向右运动,过点 E x 轴的垂线,交抛物线于点 P ,交线段 CA 于点 M ,连接 PA PB ,设点 E 运动的时间为 t ( 0 < t < 4 ) 秒,求四边形 PBCA 的面积 S t 的函数关系式,并求出四边形 PBCA 的最大面积;

(3)抛物线的对称轴上是否存在一点 H ,使得 ΔABH 是直角三角形?若存在,请直接写出点 H 的坐标;若不存在,请说明理由.

来源:2017年贵州省黔南州中考数学试卷
  • 更新:2021-04-27
  • 题型:未知
  • 难度:未知

如图, M 的圆心 M ( 1 , 2 ) M 经过坐标原点 O ,与 y 轴交于点 A .经过点 A 的一条直线 l 解析式为: y = 1 2 x + 4 x 轴交于点 B ,以 M 为顶点的抛物线经过 x 轴上点 D ( 2 , 0 ) 和点 C ( 4 , 0 )

(1)求抛物线的解析式;

(2)求证:直线 l M 的切线;

(3)点 P 为抛物线上一动点,且 PE 与直线 l 垂直,垂足为 E PF / / y 轴,交直线 l 于点 F ,是否存在这样的点 P ,使 ΔPEF 的面积最小.若存在,请求出此时点 P 的坐标及 ΔPEF 面积的最小值;若不存在,请说明理由.

来源:2017年贵州省黔东南州中考数学试卷
  • 更新:2021-04-27
  • 题型:未知
  • 难度:未知

我们知道,经过原点的抛物线可以用 y = a x 2 + bx ( a 0 ) 表示,对于这样的抛物线:

(1)当抛物线经过点 ( 2 , 0 ) ( 1 , 3 ) 时,求抛物线的表达式;

(2)当抛物线的顶点在直线 y = 2 x 上时,求 b 的值;

(3)如图,现有一组这样的抛物线,它们的顶点 A 1 A 2 A n 在直线 y = 2 x 上,横坐标依次为 1 2 3 n ( n 为正整数,且 n 12 ) ,分别过每个顶点作 x 轴的垂线,垂足记为 B 1 B 2 B n ,以线段 A n B n 为边向左作正方形 A n B n C n D n ,如果这组抛物线中的某一条经过点 D n ,求此时满足条件的正方形 A n B n C n D n 的边长.

来源:2017年贵州省贵阳市中考数学试卷
  • 更新:2021-04-27
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,二次函数的图象交坐标轴于 A ( 1 , 0 ) B ( 4 , 0 ) C ( 0 , 4 ) 三点,点 P 是直线 BC 下方抛物线上一动点.

(1)求这个二次函数的解析式;

(2)是否存在点 P ,使 ΔPOC 是以 OC 为底边的等腰三角形?若存在,求出 P 点坐标;若不存在,请说明理由;

(3)动点 P 运动到什么位置时, ΔPBC 面积最大,求出此时 P 点坐标和 ΔPBC 的最大面积.

来源:2017年贵州省毕节市中考数学试卷
  • 更新:2021-04-27
  • 题型:未知
  • 难度:未知

如图甲,直线 y = x + 3 x 轴、 y 轴分别交于点 B 、点 C ,经过 B C 两点的抛物线 y = x 2 + bx + c x 轴的另一个交点为 A ,顶点为 P

(1)求该抛物线的解析式;

(2)在该抛物线的对称轴上是否存在点 M ,使以 C P M 为顶点的三角形为等腰三角形?若存在,请直接写出所符合条件的点 M 的坐标;若不存在,请说明理由;

(3)当 0 < x < 3 时,在抛物线上求一点 E ,使 ΔCBE 的面积有最大值(图乙、丙供画图探究).

来源:2017年贵州省安顺市中考数学试卷
  • 更新:2021-04-27
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中, Rt Δ ABC 的三个顶点分别是 A ( 8 , 3 ) B ( 4 , 0 ) C ( 4 , 3 ) ABC = α ° .抛物线 y = 1 2 x 2 + bx + c 经过点 C ,且对称轴为 x = 4 5 ,并与 y 轴交于点 G

(1)求抛物线的解析式及点 G 的坐标;

(2)将 Rt Δ ABC 沿 x 轴向右平移 m 个单位,使 B 点移到点 E ,然后将三角形绕点 E 顺时针旋转 α ° 得到 ΔDEF .若点 F 恰好落在抛物线上.

①求 m 的值;

②连接 CG x 轴于点 H ,连接 FG ,过 B BP / / FG ,交 CG 于点 P ,求证: PH = GH

来源:2016年贵州省遵义市中考数学试卷
  • 更新:2021-04-27
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中, Rt Δ ABC 的三个顶点分别是 A ( 8 , 3 ) B ( 4 , 0 ) C ( 4 , 3 ) ABC = α ° .抛物线 y = 1 2 x 2 + bx + c 经过点 C ,且对称轴为 x = 4 5 ,并与 y 轴交于点 G

(1)求抛物线的解析式及点 G 的坐标;

(2)将 Rt Δ ABC 沿 x 轴向右平移 m 个单位,使 B 点移到点 E ,然后将三角形绕点 E 顺时针旋转 α ° 得到 ΔDEF .若点 F 恰好落在抛物线上.

①求 m 的值;

②连接 CG x 轴于点 H ,连接 FG ,过 B BP / / FG ,交 CG 于点 P ,求证: PH = GH

来源:2016年贵州省遵义市中考数学试卷
  • 更新:2021-04-27
  • 题型:未知
  • 难度:未知

初中数学待定系数法求二次函数解析式解答题