如图,已知抛物线经过点 A ( − 1 , 0 ) , B ( 4 , 0 ) , C ( 0 , 2 ) 三点,点 D 与点 C 关于 x 轴对称,点 P 是 x 轴上的一个动点,设点 P 的坐标为 ( m , 0 ) ,过点 P 作 x 轴的垂线 l 交抛物线于点 Q ,交直线 BD 于点 M .
(1)求该抛物线所表示的二次函数的表达式;
(2)已知点 F ( 0 , 1 2 ) ,当点 P 在 x 轴上运动时,试求 m 为何值时,四边形 DMQF 是平行四边形?
(3)点 P 在线段 AB 运动过程中,是否存在点 Q ,使得以点 B 、 Q 、 M 为顶点的三角形与 ΔBOD 相似?若存在,求出点 Q 的坐标;若不存在,请说明理由.
如图所示,现有一张边长为4的正方形纸片ABCD,点P为正方形AD边上的一点(不与点A、点D重合)将正方形纸片折叠,使点B落在P处,点C落在G处,PG交DC于H,折痕为EF,连接BP、BH. (1)求证:∠APB=∠BPH; (2)当点P在边AD上移动时,△PDH的周长是否发生变化?并证明你的结论; (3)设AP为x,四边形EFGP的面积为S,求出S与x的函数关系式,试问S是否存在最小值?若存在,求出这个最小值;若不存在,请说明理由.
现从A,B向甲、乙两地运送蔬菜,A,B两个蔬菜市场各有蔬菜14吨,其中甲地需要蔬菜15吨,乙地需要蔬菜13吨,从A到甲地运费50元/吨,到乙地30元/吨;从B地到甲运费60元/吨,到乙地45元/吨. (1)设A地到甲地运送蔬菜x吨,请完成下表:
(2)设总运费为W元,请写出W与x的函数关系式 (3)怎样调运蔬菜才能使运费最少?
如图,点A,E是半圆周上的三等分点,直径BC=2,AD⊥BC,垂足为D,连接BE交AD于F,过A作AG∥BE交BC于G. (1)判断直线AG与⊙O的位置关系,并说明理由. (2)求线段AF的长.
若一个三位数的十位数字比个位数字和百位数字都大,则称这个数为“伞数”.现从1,2,3,4这四个数字中任取3个数,组成无重复数字的三位数. (1)请画出树状图并写出所有可能得到的三位数; (2)甲、乙二人玩一个游戏,游戏规则是:若组成的三位数是“伞数”,则甲胜;否则乙胜.你认为这个游戏公平吗?试说明理由.
有公路l1同侧、l2异侧的两个城镇A,B,如下图.电信部门要修建一座信号发射塔,按照设计要求,发射塔到两个城镇A,B的距离必须相等,到两条公路l1,l2的距离也必须相等,发射塔C应修建在什么位置?请用尺规作图找出所有符合条件的点,注明点C的位置.(保留作图痕迹,不要求写出画法)