如图,已知抛物线 y = a x 2 + bx + c ( a ≠ 0 ) 的对称轴为直线 x = − 1 ,且抛物线与 x 轴交于 A 、 B 两点,与 y 轴交于 C 点,其中 A ( 1 , 0 ) , C ( 0 , 3 ) .
(1)若直线 y = mx + n 经过 B 、 C 两点,求直线 BC 和抛物线的解析式;
(2)在抛物线的对称轴 x = − 1 上找一点 M ,使点 M 到点 A 的距离与到点 C 的距离之和最小,求出点 M 的坐标;
(3)设点 P 为抛物线的对称轴 x = − 1 上的一个动点,求使 ΔBPC 为直角三角形的点 P 的坐标.
如图,平面直角坐标系 xOy 中, ▱ OABC 的边 OC 在 x 轴上,对角线 AC , OB 交于点 M ,函数 y = k x ( x > 0 ) 的图象经过点 A ( 3 , 4 ) 和点 M .
(1)求 k 的值和点 M 的坐标;
(2)求 ▱ OABC 的周长.
为了更好地解决养老问题,某服务中心引入优质社会资源为甲,乙两个社区共30名老人提供居家养老服务,收集得到这30名老人的年龄(单位:岁)如下:
甲社区
67
68
73
75
76
78
80
82
83
84
85
90
92
95
乙社区
66
69
72
74
81
88
89
91
96
98
根据以上信息解答下列问题:
(1)求甲社区老人年龄的中位数和众数;
(2)现从两个社区年龄在70岁以下的4名老人中随机抽取2名了解居家养老服务情况,求这2名老人恰好来自同一个社区的概率.
已知反比例函数 y = k x 的图象分别位于第二、第四象限,化简: k 2 k - 4 - 16 k - 4 + ( k + 1 ) 2 - 4 k .
如图, AB = AD , ∠ BAC = ∠ DAC = 25 ° , ∠ D = 80 ° .求 ∠ BCA 的度数.
解不等式组: 2 x - 1 ⩾ x + 2 x + 5 < 4 x - 1 .