“班级文化建设”是“校园文化建设”的重要部分,为表彰在活动中表现积极的班级,学校决定购买羽毛球拍与足球作为奖品.已知5副羽毛球拍、2个足球共需340元;4副羽毛球拍、7个足球共需515元.(1)每副羽毛球拍、每个足球各多少元?(2)时逢“五一”,商店举行优惠促销活动,具体办法如下:羽毛球拍九折,足球10个以上超出部分八折.设买x副羽毛球拍需要y1元,买x个足球需要y2元,求y1、y2关于x的函数关系式.
(1)解方程:; (2)解不等式组:
判断关于的一元二次方程的根的情况,结论是 .(填“有两个不相等的实数根”、“有两个相等的实数根”或“没有实数根”)
已知矩形纸片ABCD中,AB=24厘米,BC=10厘米. (1)按如下操作:先将矩形纸片上下对折,而后左右对折,再沿对角线对折,而后展开得到图中的折痕四边形EFGH(如图1),求菱形EFGH的面积. (2)如图2,将矩形纸片ABCD折叠,使点A与点C重合得折痕EF,则四边形AECF必为菱形,请加以证明. (3)请通过一定的操作,构造一个菱形EFGH(不同于第(1)题中的特殊图形),使菱形的四个顶点分别落在矩形ABCD的四条边上(E、F、G、H分别在边AB、BC、CD、DA上,且不与矩形ABCD的顶点重合). ①请简述操作的方法,并在图3中画出菱形EFGH. ②求菱形EFGH的面积的取值范围.
如图①,直线l:y=mx+n(m<0,n>0)与x,y轴分别相交于A,B 两点,将△AOB绕点O逆时针旋转90°,得到△COD,(1)若l:,E为AD的中点①在CD上有一动点F ,求当△DEF与△COD相似时点F的坐标;②如图②,过E作x轴的垂线a,在直线a上是否存在一点Q,使∠CQO=∠CDO?若存在,求出Q点坐标;若不存在,请说明理由(2)如图③,若l:y=mx﹣4m,G为AB中点,H为CD中点,连接GH,M为GH中点,连接OM.若OM=,直接写出l的函数解析式.
九(1)班数学兴趣小组经过市场调查,整理出某种商品在第x(1≤x≤90)天的售价与销量的相关信息如下表:
已知该商品的进价为每件30元,设销售该商品的每天利润为y元.(1)求出y与x的函数关系式;(2)问销售该商品第几天时,当天销售利润最大,最大利润是多少?(3)该商品在销售过程中,共有多少天每天销售利润不低于4800元?请直接写出结果.