我们知道,经过原点的抛物线可以用 y = a x 2 + bx ( a ≠ 0 ) 表示,对于这样的抛物线:
(1)当抛物线经过点 ( − 2 , 0 ) 和 ( − 1 , 3 ) 时,求抛物线的表达式;
(2)当抛物线的顶点在直线 y = − 2 x 上时,求 b 的值;
(3)如图,现有一组这样的抛物线,它们的顶点 A 1 、 A 2 、 … , A n 在直线 y = − 2 x 上,横坐标依次为 − 1 , − 2 , − 3 , … , − n ( n 为正整数,且 n ⩽ 12 ) ,分别过每个顶点作 x 轴的垂线,垂足记为 B 1 、 B 2 , … , B n ,以线段 A n B n 为边向左作正方形 A n B n C n D n ,如果这组抛物线中的某一条经过点 D n ,求此时满足条件的正方形 A n B n C n D n 的边长.
为了加强学生的安全意识,某校组织了学生参加安全知识竞赛,从中抽取了部分学生成绩(得分数取正整数,满分为100分)进行统计,绘制统计图如下(未完成),解答下列问题: (1)若A组的频数比B组小24,求频数分布直方图中的a、b的值; (2)扇形统计图中,D部分所对的圆心角为n°,求n的值并补全频数分布直方图; (3)若成绩在80分以上优秀,全校共有2000名学生,估计成绩优秀的学生有多少名?
如图,已知函数y=﹣x+b的图象与x轴、y轴分别交于点A、B,与函数y=x的图象交于点M,点M的横坐标为2,在x轴上有一点P(a,0)(其中a>2),过点P作x轴的垂线,分别交函数y=﹣x+b和y=x的图象于点C、D. (1)求点A的坐标; (2)若OB=CD,求a的值.
已知:如图,在△ABC中,AB=AC,AD是BC边上的中线,AE∥BC,CE⊥AE,垂足为E. (1)求证:△ABD≌△CAE; (2)连接DE,线段DE与AB之间有怎样的位置和数量关系?请证明你的结论.
一家服装店老板到厂家选购A、B两种型号的服装,若购进A种型号服装9件,B种型号服装10件,需要1810元;若购进A种型号服装12件,B种型号服装8件,需要1880元.问A、B两种型号的服装每件分别为多少元?
将某雷达测速区监测到的一组汽车的时速数据整理,得到其频数分布表(未完成):
注:30~40为时速大于等于30千米而小于40千米,其他类同. (1)请你把表中的数据填写完整; (2)补全频数分布直方图; (3)如果此路段汽车时速超过60千米即为违章,则违章车辆共有多少辆?