(本 题10分)如图,抛物线与轴分别交于A、B两点。 (1)求点A、B和顶点M的坐标;(2)求△ABM的面积。
杂技团进行杂技表演,演员从跷跷板右端A处弹跳到人梯顶端椅子B处,其身体(看成一个点)的路线是抛物线y=-x2+3x+1的一部分. (1)求演员弹跳离地面的最大高度; (2)已知人梯高BC=3.4米,在一次表演中,人梯到起跳点A的水平距离是4米,问这次表演是否成功?说明理由.
如图所示,点在的直径的延长线上,点在上,且,∠°. (1)求证:是的切线; (2)若的半径为2,求图中阴影部分的面积.
某校有A、B两个餐厅,甲、乙、丙三名学生各自随机选择其中的一个餐厅用餐. (1)请用列表或画树形图的方法求甲、乙、丙三名学生在同一个餐厅用餐的概率; (2)求甲、乙、丙三名学生中至少有一人在B餐厅用餐的概率
关x的一元二次方程(x-2)(x-3)=m有两个实数根x1、x2, (1)求m的取值范围; (2)若x1、x2满足等式x1x2-x1-x2+1=0,求m的值.
如图,直线y=x+m和抛物线y=x2+bx+c都经过点A(1,0),B(3,2) (1)求m的值和抛物线的关系式; (2)求不等式x2+bx+c>x+m的解集(直接写出答案).