(百色)抛物线经过A(0,2),B(3,2)两点,若两动点D、E同时从原点O分别沿着x轴、y轴正方向运动,点E的速度是每秒1个单位长度,点D的速度是每秒2个单位长度.(1)求抛物线与x轴的交点坐标;(2)若点C为抛物线与x轴的交点,是否存在点D,使A、B、C、D四点围成的四边形是平行四边形?若存在,求点D的坐标;若不存在,说明理由;(3)问几秒钟时,B、D、E在同一条直线上?
已知抛物线的顶点是(,为常数),并经过点点为一定点.求含有常数的抛物线的解析式;设点P是抛物线上任意一点,过P作PH⊥轴,垂足是H,求证:PD=PH;设过原点O的直线与抛物线在第一象限相交A、B两点,若DA=2DB,且,求的值
如图,已知线段AB∥CD,AD与B C相交于点K,E是线段AD上一动点.若BK=KC,求的值连接BE,若BE平分∠ABC,则当AE=AD时,猜想线段AB、BC、CD三者之间有怎样的等量关系?请写出你的结论并予以证明再探究:当AE=AD(),而其余条件不变时,线段AB、BC、CD三者之间又有怎样的等量关系?请直接写出你的结论,不必证明.
如图,在△ABC中,以AC边为直径的⊙O交BC边于点D,在劣弧 上取一点E,并使∠EBC=∠DEC,延长BE依次交AC于G,交⊙O于H求证:AC⊥BH若∠ABC=45°,⊙O的直径等于10,BD=8,求CE的长
为实施“农村留守儿童关爱计划”,某校对全校各班留守儿童的人数情况进行了统计,发现各班留守儿童人数只有1名、2名、3名、4名、5名、6名共六种情况,并制成如下两幅不完整的统计图:求该校平均每班有多少名留守儿童?并将该条形统计图补充完整;某爱心人士决定从只有2名留守儿童的这些班级中,任选两名进行生活资助,请用列表法或画树状图的方法,求出所选两名留守儿童来自同一个班级的概率.
如图,已知反比例函数的图象经过点(,8),直线经过该反比例函数图象上的点Q(4,).求上述反比例函数和直线的函数表达式;设该直线与轴、轴分别相交于A 、B两点,与反比例函数图象的另一个交点为P,连结0P、OQ,求△OPQ的面积.