如图,在平面直角坐标系中,一次函数的图象与y轴交于点A,与x轴交于点B,与反比例函数的图象分别交于点M,N,已知△AOB的面积为1,点M的纵坐标为2,(1)求一次函数和反比例函数的解析式;(2)直接写出时x的取值范围。
如图,已知一次函数与反比例函数的图象交于A(2,4)、B(﹣4,n)两点.(1)分别求出和的解析式;(2)求=时,x的值;(3)根据图象直接写出>时,x的取值范围.
某商场购进一批单价为4元的日用品.若按每件5元的价格销售,每月能卖出3万件;若按每件6元的价格销售,每月能卖出2万件,假定每月销售件数y(万件)与价格x(元/件)之间满足一次函数关系.(1)试求y与x之间的函数关系式;(2)当销售价格定为多少时,才能使每月的利润最大?每月的最大利润是多少?
某地计划用120~180天(含120与180天)的时间建设一项水利工程,工程需要运送的土石方总量为360万米3。写出运输公司完成任务所需的时间y(单位:天)与平均每天的工作量x(单位:万米3)之间的函数关系式。并给出自变量x的取值范围。
已知抛物线经过点A(3,0),B(-1,0).(1)求抛物线的解析式;(2)求抛物线的对称轴.
如图,在直角坐标系xoy中,O是坐标原点,点A在x正半轴上,OA=cm,点B在y轴的正半轴上,OB=12cm,动点P从点O开始沿OA以cm/s的速度向点A移动,动点Q从点A开始沿AB以4cm/s的速度向点B移动,动点R从点B开始沿BO以2cm/s的速度向点O移动.如果P、Q、R分别从O、A、B同时移动,移动时间为t(0<t<6)s.(1)求∠OAB的度数.(2)以OB为直径的⊙O‘与AB交于点M,当t为何值时,PM与⊙O‘相切?(3)求出△PQR的面积S随动点移动时间t的函数关系式,并求s的最小值及相应的t值.