首页 / 初中数学 / 试题详细
  • 更新 2022-09-04
  • 科目 数学
  • 题型 解答题
  • 难度 中等
  • 浏览 108

如图,已知抛物线 y = x 2 + bx + c x 轴交于点 A ( 1 , 0 ) 和点 B ( 3 , 0 ) ,与 y 轴交于点 C ,连接 BC 交抛物线的对称轴于点 E D 是抛物线的顶点.

(1)求此抛物线的解析式;

(2)直接写出点 C 和点 D 的坐标;

(3)若点 P 在第一象限内的抛物线上,且 S ΔABP = 4 S ΔCOE ,求 P 点坐标.

注:二次函数 y = a x 2 + bx + c ( a 0 ) 的顶点坐标为 ( b 2 a 4 ac b 2 4 a )

登录免费查看答案和解析

如图,已知抛物线y−x2bxc与x轴交于点A(−1,0)和点