如图,在平面直角坐标系中, Rt Δ ABC 的三个顶点分别是 A ( − 8 , 3 ) , B ( − 4 , 0 ) , C ( − 4 , 3 ) , ∠ ABC = α ° .抛物线 y = 1 2 x 2 + bx + c 经过点 C ,且对称轴为 x = − 4 5 ,并与 y 轴交于点 G .
(1)求抛物线的解析式及点 G 的坐标;
(2)将 Rt Δ ABC 沿 x 轴向右平移 m 个单位,使 B 点移到点 E ,然后将三角形绕点 E 顺时针旋转 α ° 得到 ΔDEF .若点 F 恰好落在抛物线上.
①求 m 的值;
②连接 CG 交 x 轴于点 H ,连接 FG ,过 B 作 BP / / FG ,交 CG 于点 P ,求证: PH = GH .
解方程组:.
先化简,再求值:,其中,b=3.
如图,在△ABC中,∠B=45°,BC=5,高AD=4,矩形EFPQ的一边QP在BC边上,E、F分别在AB、AC上,AD交EF于点H. (1)求证:; (2)设EF=x,当x为何值时,矩形EFPQ的面积最大?并求出最大面积; (3)当矩形EFPQ的面积最大时,该矩形EFPQ以每秒1个单位的速度沿射线DA匀速向上运动(当矩形的边PQ到达A点时停止运动),设运动时间为t秒,矩形EFPQ与△ABC重叠部分的面积为S,求S与t的函数关系式,并写出t的取值范围.
已知:一元二次方程. (1)求证:不论k为何实数时,此方程总有两个实数根; (2)设k<0,当二次函数的图象与x轴的两个交点A、B间的距离为4时,求此二次函数的解析式; (3)在(2)的条件下,若抛物线的顶点为C,过y轴上一点M(0,m)作y轴的垂线l,当m为何值时,直线l与△ABC的外接圆有公共点?
某校九年级学习小组在探究学习过程中,用两块完全相同的且含60°角的直角三角板ABC与AFE按如图 (1)所示位置放置放置,现将Rt△AEF绕A点按逆时针方向旋转角α(0°<α<90°),如图(2),AE与BC交于点M,AC与EF交于点N,BC与EF交于点P. (1)求证:AM=AN; (2)当旋转角α=30°时,四边形ABPF是什么样的特殊四边形?并说明理由.