如图,在平面直角坐标系中, Rt Δ ABC 的三个顶点分别是 A ( − 8 , 3 ) , B ( − 4 , 0 ) , C ( − 4 , 3 ) , ∠ ABC = α ° .抛物线 y = 1 2 x 2 + bx + c 经过点 C ,且对称轴为 x = − 4 5 ,并与 y 轴交于点 G .
(1)求抛物线的解析式及点 G 的坐标;
(2)将 Rt Δ ABC 沿 x 轴向右平移 m 个单位,使 B 点移到点 E ,然后将三角形绕点 E 顺时针旋转 α ° 得到 ΔDEF .若点 F 恰好落在抛物线上.
①求 m 的值;
②连接 CG 交 x 轴于点 H ,连接 FG ,过 B 作 BP / / FG ,交 CG 于点 P ,求证: PH = GH .
如图,在Rt△ACB中,∠C=90°,BE平分∠ABC,ED垂直平分AB于D.若AC=9,求AE的值.
某商场将进货价为40元的台灯以50元售出,平均每月能售出600个,调查表明,售价在50~70元的范围内,这种台灯的售价每上涨2元,其销售量就减少20个,为了实现平均每月10000元的销售利润,这种台灯的售价应定为多少?这时应进台灯多少个?
小明家有一块长8m、宽6m的矩形空地,妈妈准备在该空地上建造一个花园,并使花园面积为空地面积的一半,小明设计了如下的四种方案供妈妈挑选,请你选择其中的一种方案帮小明求出图中的x值.
已知:如图,AB=CD,DE⊥AC,BF⊥AC,DE=BF.求证:AE="CF." (注:证明过程要求给出每一步结论成立的依据.)
如图已知∠AOB,有两点M、N. 求作一点P,使点P在∠AOB两边距离相等,且到点M、N的距离也相等,保留作图痕迹并描黑,完成填空。解:(1)连接 ;作 垂直平分线CD;(2)作∠AOB的 OE与CD交于点 ,∴点 就是要找的点.