在平面直角坐标系中, A , B , C 三点坐标分别为 A ( − 6 , 3 ) , B ( − 4 , 1 ) , C ( − 1 , 1 ) .
(1)如图1,顺次连接 AB , BC , CA ,得 ΔABC .
①点 A 关于 x 轴的对称点 A 1 的坐标是 ,点 B 关于 y 轴的对称点 B 1 的坐标是 ;
②画出 ΔABC 关于原点对称的△ A 2 B 2 C 2 ;
③ tan ∠ A 2 C 2 B 2 = ;
(2)利用四边形的不稳定性,将第二象限部分由小正方形组成的网格,变化为如图2所示的由小菱形组成的网格,每个小菱形的边长仍为1个单位长度,且较小内角为 60 ° ,原来的格点 A , B , C 分别对应新网格中的格点 A ' , B ' , C ' ,顺次连接 A ' B ' , B ' C ' , C ' A ' ,得△ A ' B ' C ' ,则 tan ∠ A ' C ' B ' = .
计算: (1) (2)
如图,已知∆ABC中,,,D是AB上一动点,DE∥BC,交AC于E,将四边形BDEC沿DE向上翻折,得四边形,与AB、AC分别交于点M、N. (1)证明:∆ADE ; (2)设AD为x,梯形MDEN的面积为y,试求y与x的函数关系式. 当x为何值时y有最大值?
如图,以线段为直径的⊙交线段于点,点是弧AE的中点,交于点,°,,. (1)求的度数; (2)求证:BC是⊙的切线; (3)求MD的长度.
如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B. (1)求证:△ADF∽△DEC (2)若AB=4,AD=3,AE=3,求AF的长
会堂里竖直挂一条幅AB,如图,小刚从与B成水平的C点观察,视角∠C=30°,当他沿CB方向前进2米到达到D时,视角∠ADB=45°,求条幅AB的长度