在平面直角坐标系中, A , B , C 三点坐标分别为 A ( − 6 , 3 ) , B ( − 4 , 1 ) , C ( − 1 , 1 ) .
(1)如图1,顺次连接 AB , BC , CA ,得 ΔABC .
①点 A 关于 x 轴的对称点 A 1 的坐标是 ,点 B 关于 y 轴的对称点 B 1 的坐标是 ;
②画出 ΔABC 关于原点对称的△ A 2 B 2 C 2 ;
③ tan ∠ A 2 C 2 B 2 = ;
(2)利用四边形的不稳定性,将第二象限部分由小正方形组成的网格,变化为如图2所示的由小菱形组成的网格,每个小菱形的边长仍为1个单位长度,且较小内角为 60 ° ,原来的格点 A , B , C 分别对应新网格中的格点 A ' , B ' , C ' ,顺次连接 A ' B ' , B ' C ' , C ' A ' ,得△ A ' B ' C ' ,则 tan ∠ A ' C ' B ' = .
已知:如图,中,,于,平分,且于,与相交于点是边的中点,连结与相交于点. (1)求证:≌; (2)求证:。
某工厂有甲、乙两个蓄水池,将甲池中的水以每小时5立方米的速度注入乙池,甲、乙两个蓄水池中水的深度y(米)与注水时间x(时)之间的函数图象如图所示,结合图象回答下列问题: (1)分别求出甲、乙两个蓄水池中水的深度y(米)与注水时间x(时)之间的函数关系式(不写自变量x的取值范围); (2)算出注水多长时间后甲、乙两个蓄水池水的深度相同? (3)当两个蓄水池水深相同时,水深是多少?并求出甲蓄水池刚开始里面的蓄水量是多少立方米?
为了美化环境,在一块正方形空地上分别种植四种不同的花草。现将这块空地按下列要求分成四块:⑴分割后的整个图形必须是轴对称图形;⑵四块图形形状相同;⑶四块图形面积相等。现已有两种不同的分法: (1)分别作两条对角线(图11) (2)过一条边的三等分点作这边的垂线段(图12) (图12中两个图形的分割看作同一方法) 请你按照上述三个要求,分别在下面三个正方形中给出另外三种不同的分割方法(只要求正确画图,不写画法).
在平面直角坐标系中,已知直线经过A(-3,7)、B(2,-3)两点。 (1)求经过A、B两点的一次函数关系式; (2)画出该一次函数的图象。
(1) (2)