如图1,抛物线 y = a x 2 + bx + 7 4 ,经过 A ( 1 , 0 ) 、 B ( 7 , 0 ) 两点,交 y 轴于 D 点,以 AB 为边在 x 轴上方作等边 ΔABC .
(1)求抛物线的解析式;
(2)在 x 轴上方的抛物线上是否存在点 M ,是 S ΔABM = 4 3 9 S ΔABC ?若存在,请求出点 M 的坐标;若不存在,请说明理由;
(3)如图2, E 是线段 AC 上的动点, F 是线段 BC 上的动点, AF 与 BE 相交于点 P .
①若 CE = BF ,试猜想 AF 与 BE 的数量关系及 ∠ APB 的度数,并说明理由;
②若 AF = BE ,当点 E 由 A 运动到 C 时,请直接写出点 P 经过的路径长(不需要写过程).
如图,和是有公共顶点的等腰直角三角形,,点为射线,的交点.
(1)求证:;
(2)若,,把绕点旋转,
①当时,求的长;
②直接写出旋转过程中线段长的最小值与最大值.
如图,已知点,,,抛物线与直线交于点.
(1)当抛物线经过点时,求它的表达式;
(2)设点的纵坐标为,求的最小值,此时抛物线上有两点,,,,且,比较与的大小;
(3)当抛物线与线段有公共点时,直接写出的取值范围.
如图,在中,,点在上,以为半径的交于点,的垂直平分线交于点,交于点,连接.
(1)判断直线与的位置关系,并说明理由;
(2)若,,,求线段的长.
小李是某服装厂的一名工人,负责加工,两种型号服装,他每月的工作时间为22天,月收入由底薪和计件工资两部分组成,其中底薪900元,加工型服装1件可得20元,加工型服装1件可得12元.已知小李每天可加工型服装4件或型服装8件,设他每月加工型服装的时间为天,月收入为元.
(1)求与的函数关系式;
(2)根据服装厂要求,小李每月加工型服装数量应不少于型服装数量的 3 5 ,那么他的月收入最高能达到多少元?
如图,在平面直角坐标系中,过点的直线与轴交于点, tan ∠ OAB = 1 2 ,直线上的点位于轴左侧,且到轴的距离为1.
(1)求直线的表达式;
(2)若反比例函数 y = m x 的图象经过点,求的值.