如图,在平面直角坐标系 xOy 中,抛物线 y = a ( x + 1 ) 2 − 3 与 x 轴交于 A , B 两点(点 A 在点 B 的左侧),与 y 轴交于点 C ( 0 , − 8 3 ) ,顶点为 D ,对称轴与 x 轴交于点 H ,过点 H 的直线 l 交抛物线于 P , Q 两点,点 Q 在 y 轴的右侧.
(1)求 a 的值及点 A , B 的坐标;
(2)当直线 l 将四边形 ABCD 分为面积比为 3 : 7 的两部分时,求直线 l 的函数表达式;
(3)当点 P 位于第二象限时,设 PQ 的中点为 M ,点 N 在抛物线上,则以 DP 为对角线的四边形 DMPN 能否为菱形?若能,求出点 N 的坐标;若不能,请说明理由.
抛物线与x轴分别交于点A (-1,0)和点B,与y轴的交点C坐标为(0,-3).(1)求抛物线的表达式;(2)点D为抛物线对称轴上的一个动点,若DA+DC的值最小,求点D的坐标.
如图,直线y=3x与双曲线的两个交点分别为A (1 ,m)和B.(1)直接写出点B坐标,并求出双曲线的表达式;(2)若点P为双曲线上的点(点P不与A、B重合),且满足PO=OB,直接写出点P坐标.
小红想要测量校园内一座教学楼CD的高度.她先在A处测得楼顶C的仰角30°,再向楼的方向直行10米到达B处,又测得楼顶C的仰角60°,若小红的目高(眼睛到地面的高度)AE为1.60米,请你帮助她计算出这座教学楼CD的高度(结果精确到0.1米)参考数据:,,
如图,在中,,,为上一点,,,求的长.
已知二次函数的图象与x轴有交点,求k的取值范围.