如图,在平面直角坐标系中,直线 与 轴交于点 ,与 轴交于点 ,抛物线 经过坐标原点和点 ,顶点为点 .
(1)求抛物线的关系式及点 的坐标;
(2)点 是直线 下方的抛物线上一动点,连接 , ,当 的面积等于 时,求 点的坐标;
(3)将直线 向下平移,得到过点 的直线 ,且与 轴负半轴交于点 ,取点 ,连接 ,求证: .
已知,如图,抛物线 y= ax 2+ bx+ c( a≠0)的顶点为 M(1,9),经过抛物线上的两点 A(﹣3,﹣7)和 B(3, m)的直线交抛物线的对称轴于点 C.
(1)求抛物线的解析式和直线 AB的解析式.
(2)在抛物线上 A、 M两点之间的部分(不包含 A、 M两点),是否存在点 D,使得 S △ DAC=2 S △ DCM?若存在,求出点 D的坐标;若不存在,请说明理由.
(3)若点 P在抛物线上,点 Q在 x轴上,当以点 A, M, P, Q为顶点的四边形是平行四边形时,直接写出满足条件的点 P的坐标.
已知直线y=2x+m与抛物线y=ax2+ax+b有一个公共点M(1,0),且a<b.
(Ⅰ)求抛物线顶点Q的坐标(用含a的代数式表示);
(Ⅱ)说明直线与抛物线有两个交点;
(Ⅲ)直线与抛物线的另一个交点记为N.
(ⅰ)若 ,求线段MN长度的取值范围;
(ⅱ)求△QMN面积的最小值.
如图,抛物线 y= ax 2+ bx﹣2( a≠0)与 x轴交于 A(﹣3,0), B(1,0)两点,与 y轴交于点 C,直线 y=﹣ x与该抛物线交于 E, F两点.
(1)求抛物线的解析式.
(2) P是直线 EF下方抛物线上的一个动点,作 PH⊥ EF于点 H,求 PH的最大值.
(3)以点 C为圆心,1为半径作圆,⊙ C上是否存在点 M,使得△ BCM是以 CM为直角边的直角三角形?若存在,直接写出 M点坐标;若不存在,说明理由.
抛物线 经过点 和点 ,与 轴交于点 .
(1)求该抛物线的函数表达式;
(2)点 是该抛物线上的动点,且位于 轴的左侧.
①如图1,过点 作 轴于点 ,作 轴于点 ,当 时,求 的长;
②如图2,该抛物线上是否存在点 ,使得 ?若存在,请求出所有点 的坐标;若不存在,请说明理由.
如图,在平面直角坐标系中,已知抛物线 y= ax 2+ bx+2( a≠0)与 x轴交于 A(﹣1,0), B(3,0)两点,与 y轴交于点 C,连接 BC.
(1)求该抛物线的解析式,并写出它的对称轴;
(2)点 D为抛物线对称轴上一点,连接 CD、 BD,若∠ DCB=∠ CBD,求点 D的坐标;
(3)已知 F(1,1),若 E( x, y)是抛物线上一个动点(其中1< x<2),连接 CE、 CF、 EF,求△ CEF面积的最大值及此时点 E的坐标.
(4)若点 N为抛物线对称轴上一点,抛物线上是否存在点 M,使得以 B, C, M, N为顶点的四边形是平行四边形?若存在,请直接写出所有满足条件的点 M的坐标;若不存在,请说明理由.
如图,抛物线经过轴上的点和点及轴上的点,经过、两点的直线为.
①求抛物线的解析式.
②点从出发,在线段上以每秒1个单位的速度向运动,同时点从出发,在线段上以每秒2个单位的速度向运动.当其中一个点到达终点时,另一点也停止运动.设运动时间为秒,求为何值时,的面积最大并求出最大值.
③过点作于点,过抛物线上一动点(不与点、重合)作直线的平行线交直线于点.若点、、、为顶点的四边形是平行四边形,求点的横坐标.
如图1,已知抛物线过点,.
(1)求抛物线的解析式及其顶点的坐标;
(2)设点是轴上一点,当时,求点的坐标;
(3)如图2.抛物线与轴交于点,点是该抛物线上位于第二象限的点,线段交于点,交轴于点,和的面积分别为、,求的最大值.
在平面直角坐标系中,抛物线 交 轴于 , 两点,交 轴于点 .
(1)求抛物线的表达式;
(2)如图,直线 与抛物线交于 , 两点,与直线 交于点 .若 是线段 上的动点,过点 作 轴的垂线,交抛物线于点 ,交直线 于点 ,交直线 于点 .
①当点 在直线 上方的抛物线上,且 时,求 的值;
②在平面内是否在点 ,使四边形 为正方形?若存在,请直接写出点 的坐标;若不存在,请说明理由.
在平面直角坐标系 xOy中,抛物线 y= ax 2+ bx+2过点 A(﹣2,0), B(2,2),与 y轴交于点 C.
(1)求抛物线 y= ax 2+ bx+2的函数表达式;
(2)若点 D在抛物线 y= ax 2+ bx+2的对称轴上,求△ ACD的周长的最小值;
(3)在抛物线 y= ax 2+ bx+2的对称轴上是否存在点 P,使△ ACP是直角三角形?若存在直接写出点 P的坐标,若不存在,请说明理由.
如图所示,已知抛物线 ,与x轴从左至右依次相交于A、B两点,与y轴相交于点C,经过点A的直线 与抛物线的另一个交点为D.
(1)若点D的横坐标为2,求抛物线的函数解析式;
(2)若在第三象限内的抛物线上有点P,使得以A、B、P为顶点的三角形与△ABC相似,求点P的坐标;
(3)在(1)的条件下,设点E是线段AD上的一点(不含端点),连接BE.一动点Q从点B出发,沿线段BE以每秒1个单位的速度运动到点E,再沿线段ED以每秒 个单位的速度运动到点D后停止,问当点E的坐标是多少时,点Q在整个运动过程中所用时间最少?
如图,抛物线 与抛物线 开口大小相同、方向相反,它们相交于 , 两点,且分别与 轴的正半轴交于点 ,点 , .
(1)求抛物线 的解析式;
(2)在抛物线 的对称轴上是否存在点 ,使 的值最小?若存在,求出点 的坐标,若不存在,说明理由;
(3) 是直线 上方抛物线 上的一个动点,连接 , , 运动到什么位置时, 面积最大?并求出最大面积.
如图①,已知 的三个顶点坐标分别为 、 、 ,直线 交 轴正半轴于点 .
(1)求经过 、 、 三点的抛物线解析式及顶点 的坐标;
(2)连接 、 ,设 , ,若 ,求点 的坐标;
(3)如图②,在(2)的条件下,动点 从点 出发以每秒 个单位的速度在直线 上移动(不考虑点 与点 、 重合的情况),点 为抛物线上一点,设点 移动的时间为 秒,在点 移动的过程中,以 、 、 、 四个点为顶点的四边形能否成为平行四边形?若能,直接写出所有满足条件的 值及点 的个数;若不能,请说明理由.
如图,在平面直角坐标系 中,平行四边形 的 边与 轴交于 点, 是 的中点, 、 、 的坐标分别为 , , .
(1)求过 、 、 三点的抛物线的解析式;
(2)试判断抛物线的顶点是否在直线 上;
(3)设过 与 平行的直线交 轴于 , 是线段 之间的动点,射线 与抛物线交于另一点 ,当 的面积最大时,求 的坐标.