初中数学

已知二次函数 yax 2﹣2 ax+ ca<0)的最大值为4,且抛物线过点( 7 2 ,﹣ 9 4 ,点 Pt,0)是 x轴上的动点,抛物线与 y轴交点为 C,顶点为 D

(1)求该二次函数的解析式,及顶点 D的坐标;

(2)求| PCPD|的最大值及对应的点 P的坐标;

(3)设 Q(0,2 t)是 y轴上的动点,若线段 PQ与函数 ya| x| 2﹣2 a| x|+ c的图象只有一个公共点,求 t的取值.

来源:2016年内蒙古呼和浩特市中考数学试卷
  • 更新:2021-03-22
  • 题型:未知
  • 难度:未知

如图1,抛物线 y = a x 2 - 2 ax - 3 a ( a 0 ) x 轴交于点 A B .与 y 轴交于点 C .连接 AC BC .已知 ΔABC 的面积为2.

(1)求抛物线的解析式;

(2)平行于 x 轴的直线与抛物线从左到右依次交于 P Q 两点.过 P Q x 轴作垂线,垂足分别为 G H .若四边形 PGHQ 为正方形,求正方形的边长;

(3)如图2,平行于 y 轴的直线交抛物线于点 M ,交 x 轴于点 N ( 2 , 0 ) .点 D 是抛物线上 A M 之间的一动点,且点 D 不与 A M 重合,连接 DB MN 于点 E .连接 AD 并延长交 MN 于点 F .在点 D 运动过程中, 3 NE + NF 是否为定值?若是,求出这个定值;若不是,请说明理由.

来源:2020年四川省德阳市中考数学试卷
  • 更新:2021-05-20
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,已知抛物线 y 1 2 x 2+ 3 2 x﹣2与 x轴交于 AB两点(点 A在点 B的左侧),与 y轴交于点 C,直线 l经过 AC两点,连接 BC

(1)求直线 l的解析式;

(2)若直线 xmm<0)与该抛物线在第三象限内交于点 E,与直线 l交于点 D,连接 OD.当 ODAC时,求线段 DE的长;

(3)取点 G(0,﹣1),连接 AG,在第一象限内的抛物线上,是否存在点 P,使∠ BAP=∠ BCO﹣∠ BAG?若存在,求出点 P的坐标;若不存在,请说明理由.

来源:2018年内蒙古包头市中考数学试卷
  • 更新:2021-04-09
  • 题型:未知
  • 难度:未知

如图①,直线 y 4 3 x + 4 交于x轴于点A,交y轴于点C,过AC两点的抛物线F1x轴于另一点B(1,0).

(1)求抛物线F1所表示的二次函数的表达式;

(2)若点M是抛物线F1位于第二象限图象上的一点,设四边形MAOC和△BOC的面积分别为S四边形MAOCSBOC,记 S S 四边形 MAOC S BOC ,求S最大时点M的坐标及S的最大值;

(3)如图②,将抛物线F1沿y轴翻折并“复制”得到抛物线F2,点AB与(2)中所求的点M的对应点分别为A′、B′、M′,过点M′作MEx轴于点E,交直线AC于点D,在x轴上是否存在点P,使得以A′、DP为顶点的三角形与△ABC相似?若存在,请求出点P的坐标;若不存在,请说明理由.

来源:2016年湖南省岳阳市中考数学试卷
  • 更新:2021-04-15
  • 题型:未知
  • 难度:未知

如图,抛物线 yax 2+ bx+2与 x轴相交于 A(﹣1,0), B(4,0)两点,与 y轴相交于点 C

(1)求抛物线的解析式;

(2)将△ ABCAB中点 M旋转180°,得到△ BAD

①求点 D的坐标;

②判断四边形 ADBC的形状,并说明理由;

(3)在该抛物线对称轴上是否存在点 P,使△ BMP与△ BAD相似?若存在,请求出所有满足条件的 P点的坐标;若不存在,请说明理由.

来源:2018年内蒙古巴彦淖尔市中考数学试卷
  • 更新:2021-04-09
  • 题型:未知
  • 难度:未知

如图,已知抛物线 y = a x 2 + bx + c 过点 A ( 3 , 0 ) B ( 2 , 3 ) C ( 0 , 3 ) ,其顶点为 D

(1)求抛物线的解析式;

(2)设点 M ( 1 , m ) ,当 MB + MD 的值最小时,求 m 的值;

(3)若 P 是抛物线上位于直线 AC 上方的一个动点,求 ΔAPC 的面积的最大值;

(4)若抛物线的对称轴与直线 AC 相交于点 N E 为直线 AC 上任意一点,过点 E EF / / ND 交抛物线于点 F ,以 N D E F 为顶点的四边形能否为平行四边形?若能,求点 E 的坐标;若不能,请说明理由.

来源:2017年四川省广元市中考数学试卷
  • 更新:2021-05-20
  • 题型:未知
  • 难度:未知

已知函数 y 1 = x + 2 m - 1 y 2 = ( 2 m + 1 ) x + 1 均为一次函数, m 为常数.

(1)如图1,将直线 AO 绕点 A ( - 1 , 0 ) 逆时针旋转 45 ° 得到直线 l ,直线 l y 轴于点 B .若直线 l 恰好是 y 1 = x + 2 m - 1 y 2 = ( 2 m + 1 ) x + 1 中某个函数的图象,请直接写出点 B 坐标以及 m 可能的值;

(2)若存在实数 b ,使得 | m | - ( b - 1 ) 1 - b = 0 成立,求函数 y 1 = x + 2 m - 1 y 2 = ( 2 m + 1 ) x + 1 图象间的距离;

(3)当 m > 1 时,函数 y 1 = x + 2 m - 1 图象分别交 x 轴, y 轴于 C E 两点, y 2 = ( 2 m + 1 ) x + 1 图象交 x 轴于 D 点,将函数 y = y 1 · y 2 的图象最低点 F 向上平移 56 2 m + 1 个单位后刚好落在一次函数 y 1 = x + 2 m - 1 图象上.设 y = y 1 · y 2 的图象,线段 OD ,线段 OE 围成的图形面积为 S ,试利用初中知识,探究 S 的一个近似取值范围.(要求:说出一种得到 S 的更精确的近似值的探究办法,写出探究过程,得出探究结果,结果的取值范围两端的数值差不超过0.01. )

来源:2020年湖北省宜昌市中考数学试卷
  • 更新:2020-12-31
  • 题型:未知
  • 难度:未知

如图1,抛物线 y = a x 2 + bx + 3 ( a 0 ) x 轴交于 A ( - 1 , 0 ) B ( 3 , 0 ) ,与 y 轴交于点 C .已知直线 y = kx + n B C 两点.

(1)求抛物线和直线 BC 的表达式;

(2)点 P 是抛物线上的一个动点.

①如图1,若点 P 在第一象限内,连接 PA ,交直线 BC 于点 D .设 ΔPDC 的面积为 S 1 ΔADC 的面积为 S 2 ,求 S 1 S 2 的最大值;

②如图2,抛物线的对称轴 l x 轴交于点 E ,过点 E EF BC ,垂足为 F .点 Q 是对称轴 l 上的一个动点,是否存在以点 E F P Q 为顶点的四边形是平行四边形?若存在,求出点 P Q 的坐标;若不存在,请说明理由.

来源:2020年湖南省郴州市中考数学试卷
  • 更新:2020-12-31
  • 题型:未知
  • 难度:未知

如图,二次函数 yax 2+ bx+ ca≠0)的图象交 x轴于 AB两点,交 y轴于点 D,点 B的坐标为(3,0),顶点 C的坐标为(1,4).

(1)求二次函数的解析式和直线 BD的解析式;

(2)点 P是直线 BD上的一个动点,过点 Px轴的垂线,交抛物线于点 M,当点 P在第一象限时,求线段 PM长度的最大值;

(3)在抛物线上是否存在异于 BD的点 Q,使△ BDQBD边上的高为2 2 ?若存在求出点 Q的坐标;若不存在请说明理由.

来源:2017年内蒙古赤峰市中考数学试卷
  • 更新:2021-03-22
  • 题型:未知
  • 难度:未知

如图1,在平面直角坐标系中,抛物线 y 3 8 x 2+ 3 3 4 x 7 3 8 x轴交于点 AB(点 A在点 B右侧),点 D为抛物线的顶点,点 Cy轴的正半轴上, CDx轴于点 F,△ CAD绕点 C顺时针旋转得到△ CFE,点 A恰好旋转到点 F,连接 BE

(1)求点 ABD的坐标;

(2)求证:四边形 BFCE是平行四边形;

(3)如图2,过顶点 DDD 1x轴于点 D 1,点 P是抛物线上一动点,过点 PPMx轴,点 M为垂足,使得△ PAM与△ DD 1 A相似(不含全等).

①求出一个满足以上条件的点 P的横坐标;

②直接回答这样的点 P共有几个?

来源:2019年广东省中考数学试卷
  • 更新:2021-04-13
  • 题型:未知
  • 难度:未知

若两条抛物线的顶点相同,则称它们为"友好抛物线",抛物线 C 1y 1=﹣2 x 2+4 x+2与 C 2y 2=﹣ x 2+ mx+ n为"友好抛物线".

(1)求抛物线 C 2的解析式.

(2)点 A是抛物线 C 2上在第一象限的动点,过 AAQx轴, Q为垂足,求 AQ+ OQ的最大值.

(3)设抛物线 C 2的顶点为 C,点 B的坐标为(﹣1,4),问在 C 2的对称轴上是否存在点 M,使线段 MB绕点 M逆时针旋转90°得到线段 MB′,且点 B′恰好落在抛物线 C 2上?若存在求出点 M的坐标,不存在说明理由.

来源:2016年黑龙江省大庆市中考数学试卷
  • 更新:2021-04-16
  • 题型:未知
  • 难度:未知

如图,抛物线yax2+bx+c经过△ABC的三个顶点,与y轴相交于 ( 0 , 9 4 ) ,点A坐标为 (﹣ 1 , 2 ,点B是点A关于y轴的对称点,点Cx轴的正半轴上.

(1)求该抛物线的函数关系表达式.

(2)点F为线段AC上一动点,过FFEx轴,FGy轴,垂足分别为EG,当四边形OEFG为正方形时,求出F点的坐标.

(3)将(2)中的正方形OEFG沿OC向右平移,记平移中的正方形OEFG为正方形DEFG,当点E和点C重合时停止运动,设平移的距离为t,正方形的边EFAC交于点MDG所在的直线与AC交于点N,连接DM,是否存在这样的t,使△DMN是等腰三角形?若存在,求t的值;若不存在请说明理由.

来源:2016年湖南省衡阳市中考数学试卷
  • 更新:2021-04-16
  • 题型:未知
  • 难度:未知

如图①,已知 ΔABC 的三个顶点坐标分别为 A ( 1 , 0 ) B ( 3 , 0 ) C ( 0 , 3 ) ,直线 BE y 轴正半轴于点 E

(1)求经过 A B C 三点的抛物线解析式及顶点 D 的坐标;

(2)连接 BD CD ,设 DBO = α EBO = β ,若 tan ( α β ) = 1 ,求点 E 的坐标;

(3)如图②,在(2)的条件下,动点 M 从点 C 出发以每秒 2 个单位的速度在直线 BC 上移动(不考虑点 M 与点 C B 重合的情况),点 N 为抛物线上一点,设点 M 移动的时间为 t 秒,在点 M 移动的过程中,以 E C M N 四个点为顶点的四边形能否成为平行四边形?若能,直接写出所有满足条件的 t 值及点 M 的个数;若不能,请说明理由.

来源:2016年辽宁省营口市中考数学试卷
  • 更新:2021-05-16
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系 xOy 中,平行四边形 ABCD AB 边与 y 轴交于 E 点, F AD 的中点, B C D 的坐标分别为 ( - 2 , 0 ) ( 8 , 0 ) ( 13 , 10 )

(1)求过 B E C 三点的抛物线的解析式;

(2)试判断抛物线的顶点是否在直线 EF 上;

(3)设过 F AB 平行的直线交 y 轴于 Q M 是线段 EQ 之间的动点,射线 BM 与抛物线交于另一点 P ,当 ΔPBQ 的面积最大时,求 P 的坐标.

来源:2021年湖南省常德市中考数学试卷
  • 更新:2021-08-01
  • 题型:未知
  • 难度:未知

如图,抛物线 y = a x 2 + bx + 3 经过点 A ( 1 , 0 ) 和点 B ( 4 , 0 ) ,且与 y 轴相交于点 C .点 D 是线段 BC 上的一个动点(不与点 B C 重合),设点 D 的横坐标为 t ,过点 D DE / / y 轴交抛物线于点 E ,点 F DE 的延长线上,且 EF = DE ,过点 F FG 直线 BC ,垂足为点 G

(1)求此抛物线的解析式和点 C 的坐标;

(2)设 ΔDFG 的周长为 L ,求 L 关于 t 的函数关系式;

(3)直线 m 经过点 C ,且直线 m / / x 轴,点 P 是直线 m 上任意一点,过点 P 分别作 PQ 直线 BC PR x 轴,垂足分别为点 Q R ,若以三点 P Q R 为顶点的三角形是等腰三角形,请直接写出点 P 的坐标.

来源:2016年辽宁省铁岭市中考数学试卷
  • 更新:2021-05-15
  • 题型:未知
  • 难度:未知

初中数学二次函数的性质解答题