初中数学

已知抛物线 y = a x 2 - 2 x + 1 ( a 0 ) 的对称轴为直线 x = 1

(1)求 a 的值;

(2)若点 M ( x 1 y 1 ) N ( x 2 y 2 ) 都在此抛物线上,且 - 1 < x 1 < 0 1 < x 2 < 2 .比较 y 1 y 2 的大小,并说明理由;

(3)设直线 y = m ( m > 0 ) 与抛物线 y = a x 2 - 2 x + 1 交于点 A B ,与抛物线 y = 3 ( x - 1 ) 2 交于点 C D ,求线段 AB 与线段 CD 的长度之比.

来源:2021年安徽省中考数学试卷
  • 更新:2021-08-18
  • 题型:未知
  • 难度:未知

如图,抛物线 C 1 : y = - 3 x 2 + 2 3 x 的顶点为,与轴的正半轴交于点

(1)将抛物线上的点的横坐标和纵坐标都扩大到原来的2倍,求变换后得到的抛物线的解析式;

(2)将抛物线上的点变为,变换后得到的抛物线记作,抛物线的顶点为,点在抛物线上,满足,且

①当时,求的值;

②当时,请直接写出的值,不必说明理由.

来源:2016年福建省莆田市中考数学试卷
  • 更新:2021-03-12
  • 题型:未知
  • 难度:未知

若两条抛物线的顶点相同,则称它们为"友好抛物线",抛物线 C 1y 1=﹣2 x 2+4 x+2与 C 2y 2=﹣ x 2+ mx+ n为"友好抛物线".

(1)求抛物线 C 2的解析式.

(2)点 A是抛物线 C 2上在第一象限的动点,过 AAQx轴, Q为垂足,求 AQ+ OQ的最大值.

(3)设抛物线 C 2的顶点为 C,点 B的坐标为(﹣1,4),问在 C 2的对称轴上是否存在点 M,使线段 MB绕点 M逆时针旋转90°得到线段 MB′,且点 B′恰好落在抛物线 C 2上?若存在求出点 M的坐标,不存在说明理由.

来源:2016年黑龙江省大庆市中考数学试卷
  • 更新:2021-04-16
  • 题型:未知
  • 难度:未知

阅读:我们约定,在平面直角坐标系中,经过某点且平行于坐标轴或平行于两坐标轴夹角平分线的直线,叫该点的“特征线”.例如,点M(1,3)的特征线有: x 1 y 3 y x + 2 y =﹣ x + 4

问题与探究:如图,在平面直角坐标系中有正方形OABC,点B在第一象限,AC分别在x轴和y轴上,抛物线 y = 1 4 ( x - m ) 2 + n 经过BC两点,顶点D在正方形内部.

(1)直接写出点Dmn)所有的特征线;

(2)若点D有一条特征线是yx+1,求此抛物线的解析式;

(3)点PAB边上除点A外的任意一点,连接OP,将△OAP沿着OP折叠,点A落在点A′的位置,当点A′在平行于坐标轴的D点的特征线上时,满足(2)中条件的抛物线向下平移多少距离,其顶点落在OP上?

来源:2016年湖北省荆州市中考数学试卷
  • 更新:2021-04-08
  • 题型:未知
  • 难度:未知

在平面直角坐标系中,已知抛物线 y x 2 + bx + c 的顶点M的坐标为(﹣1,﹣4),且与x轴交于点A,点B(点A在点B的左边),与y轴交于点C

(1)填空:b  c  ,直线AC的解析式为  

(2)直线 x t x轴相交于点H

①当 t =﹣ 3 时得到直线AN(如图1),点D为直线AC下方抛物线上一点,若 COD MAN ,求出此时点D的坐标;

②当 3 t <﹣ 1 时(如图2),直线 x t 与线段ACAM和抛物线分别相交于点EFP.试证明线段HEEFFP总能组成等腰三角形;如果此等腰三角形底角的余弦值为 3 5 ,求此时t的值.

来源:2016年湖北省孝感市中考数学试卷
  • 更新:2021-04-16
  • 题型:未知
  • 难度:未知

如图,直线 y = - 3 x + 2 3 x轴,y轴分别交于点A,点B,两动点DE分别从点A,点B同时出发向点O运动(运动到点O停止),运动速度分别是1个单位长度/秒和 3 个单位长度/秒,设运动时间为t秒,以点A为顶点的抛物线经过点E,过点Ex轴的平行线,与抛物线的另一个交点为点G,与AB相交于点F

(1)求点A,点B的坐标;

(2)用含t的代数式分别表示EFAF的长;

(3)当四边形ADEF为菱形时,试判断△AFG与△AGB是否相似,并说明理由.

(4)是否存在t的值,使△AGF为直角三角形?若存在,求出这时抛物线的解析式;若不存在,请说明理由.

来源:2016年湖北省荆门市中考数学试卷
  • 更新:2021-04-08
  • 题型:未知
  • 难度:未知

如图1,在平面直角坐标系中,点为坐标原点,抛物线轴交于点,与轴交于点

(1)直接写出抛物线的解析式及其对称轴;

(2)如图2,连接,设点是抛物线上位于第一象限内的一动点,且在对称轴右侧,过点于点,交轴于点,过点于点,交轴于点.设线段的长为,求的函数关系式,并注明的取值范围;

(3)在(2)的条件下,若的面积为

①求点的坐标;

②设为直线上一动点,连接,直线交直线于点,则点在运动过程中,在抛物线上是否存在点,使得为等腰直角三角形?若存在,请直接写出点及其对应的点的坐标;若不存在,请说明理由.

来源:2019年湖北省随州市中考数学试卷
  • 更新:2021-01-01
  • 题型:未知
  • 难度:未知

已知抛物线

(1)如何将抛物线平移得到抛物线

(2)如图1,抛物线轴正半轴交于点,直线经过点,交抛物线于另一点.请你在线段上取点,过点作直线轴交抛物线于点,连接

①若,求点的横坐标;

②若,直接写出点的横坐标.

(3)如图2,的顶点在抛物线上,点在点右边,两条直线与抛物线均有唯一公共点,均与轴不平行.若的面积为2,设两点的横坐标分别为,求的数量关系.

来源:2019年湖北省武汉市中考数学试卷
  • 更新:2021-01-01
  • 题型:未知
  • 难度:未知

已知抛物线 y = - 1 2 x 2 + bx + c 轴交于点,与轴的两个交点分别为

(1)求抛物线的解析式;

(2)已知点在抛物线上,连接,若是以为直角边的直角三角形,求点的坐标;

(3)已知点轴上,点在抛物线上,是否存在以为顶点的四边形是平行四边形?若存在,请直接写出点的坐标;若不存在,请说明理由.

来源:2016年福建省龙岩市中考数学试卷
  • 更新:2021-03-12
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,已知抛物线 y 1 2 x 2+ 3 2 x﹣2与 x轴交于 AB两点(点 A在点 B的左侧),与 y轴交于点 C,直线 l经过 AC两点,连接 BC

(1)求直线 l的解析式;

(2)若直线 xmm<0)与该抛物线在第三象限内交于点 E,与直线 l交于点 D,连接 OD.当 ODAC时,求线段 DE的长;

(3)取点 G(0,﹣1),连接 AG,在第一象限内的抛物线上,是否存在点 P,使∠ BAP=∠ BCO﹣∠ BAG?若存在,求出点 P的坐标;若不存在,请说明理由.

来源:2018年内蒙古包头市中考数学试卷
  • 更新:2021-04-09
  • 题型:未知
  • 难度:未知

如图,在▱ OABC中, AC两点的坐标分别为(4,0)、(﹣2,3),抛物线 W经过 OAC三点,点 D是抛物线 W的顶点.

(1)求抛物线 W的函数解析式及顶点 D的坐标;

(2)将抛物线 W和▱ OABC同时先向右平移4个单位长度,再向下平移 m(0< m<3)个单位长度,得到抛物线 W 1和□ O 1 A 1 B 1 C 1,在向下平移过程中, O 1 C 1x轴交于点 H,▱ O 1 A 1 B 1 C 1与▱ OABC重叠部分的面积记为 S,试探究:当 m为何值时, S有最大值,并求出 S的最大值;

(3)在(2)的条件下,当 S取最大值时,设此时抛物线 W 1的顶点为 F,若点 Mx轴上的动点,点 N是抛物线 W 1上的动点,是否存在这样的点 MN,使以 DFMN为顶点的四边形是平行四边形?若存在,求出点 M的坐标;若不存在,请说明理由.

来源:2019年内蒙古兴安盟中考数学试卷
  • 更新:2021-04-09
  • 题型:未知
  • 难度:未知

如图,抛物线y=﹣x2+bx+c与直线AB交于A(﹣4,﹣4),B(0,4)两点,直线AC y = - 1 2 x - 6 y轴于点C.点E是直线AB上的动点,过点EEFx轴交AC于点F,交抛物线于点G

(1)求抛物线y=﹣x2+bx+c的表达式;

(2)连接GBEO,当四边形GEOB是平行四边形时,求点G的坐标;

(3)①在y轴上存在一点H,连接EHHF,当点E运动到什么位置时,以AEFH为顶点的四边形是矩形?求出此时点EH的坐标;

②在①的前提下,以点E为圆心,EH长为半径作圆,点M为⊙E上一动点,求 1 2 AM+CM它的最小值.

来源:2017年甘肃省兰州市中考数学试卷
  • 更新:2021-04-15
  • 题型:未知
  • 难度:未知

如图①,已知 ΔABC 的三个顶点坐标分别为 A ( 1 , 0 ) B ( 3 , 0 ) C ( 0 , 3 ) ,直线 BE y 轴正半轴于点 E

(1)求经过 A B C 三点的抛物线解析式及顶点 D 的坐标;

(2)连接 BD CD ,设 DBO = α EBO = β ,若 tan ( α β ) = 1 ,求点 E 的坐标;

(3)如图②,在(2)的条件下,动点 M 从点 C 出发以每秒 2 个单位的速度在直线 BC 上移动(不考虑点 M 与点 C B 重合的情况),点 N 为抛物线上一点,设点 M 移动的时间为 t 秒,在点 M 移动的过程中,以 E C M N 四个点为顶点的四边形能否成为平行四边形?若能,直接写出所有满足条件的 t 值及点 M 的个数;若不能,请说明理由.

来源:2016年辽宁省营口市中考数学试卷
  • 更新:2021-05-16
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系 xOy 中,平行四边形 ABCD AB 边与 y 轴交于 E 点, F AD 的中点, B C D 的坐标分别为 ( - 2 , 0 ) ( 8 , 0 ) ( 13 , 10 )

(1)求过 B E C 三点的抛物线的解析式;

(2)试判断抛物线的顶点是否在直线 EF 上;

(3)设过 F AB 平行的直线交 y 轴于 Q M 是线段 EQ 之间的动点,射线 BM 与抛物线交于另一点 P ,当 ΔPBQ 的面积最大时,求 P 的坐标.

来源:2021年湖南省常德市中考数学试卷
  • 更新:2021-08-01
  • 题型:未知
  • 难度:未知

如图,抛物线 y = a x 2 + bx + 3 经过点 A ( 1 , 0 ) 和点 B ( 4 , 0 ) ,且与 y 轴相交于点 C .点 D 是线段 BC 上的一个动点(不与点 B C 重合),设点 D 的横坐标为 t ,过点 D DE / / y 轴交抛物线于点 E ,点 F DE 的延长线上,且 EF = DE ,过点 F FG 直线 BC ,垂足为点 G

(1)求此抛物线的解析式和点 C 的坐标;

(2)设 ΔDFG 的周长为 L ,求 L 关于 t 的函数关系式;

(3)直线 m 经过点 C ,且直线 m / / x 轴,点 P 是直线 m 上任意一点,过点 P 分别作 PQ 直线 BC PR x 轴,垂足分别为点 Q R ,若以三点 P Q R 为顶点的三角形是等腰三角形,请直接写出点 P 的坐标.

来源:2016年辽宁省铁岭市中考数学试卷
  • 更新:2021-05-15
  • 题型:未知
  • 难度:未知

初中数学二次函数的性质解答题