如图,抛物线y=ax2+bx-5(a≠0)经过x轴上的点A(1,0)和点B及y轴上的点C,经过B、C两点的直线为y=x+n.
①求抛物线的解析式.
②点P从A出发,在线段AB上以每秒1个单位的速度向B运动,同时点E从B出发,在线段BC上以每秒2个单位的速度向C运动.当其中一个点到达终点时,另一点也停止运动.设运动时间为t秒,求t为何值时,ΔPBE的面积最大并求出最大值.
③过点A作AM⊥BC于点M,过抛物线上一动点N(不与点B、C重合)作直线AM的平行线交直线BC于点Q.若点A、M、N、Q为顶点的四边形是平行四边形,求点N的横坐标.
如图,AD是⊙O的弦,AB经过圆心O,交⊙O于点C,∠DAB=∠B=30°.直线BD是否与⊙O相切?为什么?连接CD,若CD=5,求AB的长.
阳光中学九(1)班同学在一次综合实践活动中,对本县居民参加“全民医保”情况进行了调查,同学们利用节假日随机调查了2000人,对调查结果进行了统计分析,绘制出两幅不完整的统计图: (注:图中A表示“城镇职工基本医疗保险”;B表示“城镇居民基本医疗保险”;C表示“新型农村合作医疗”;D表示其他情况)补全条形统计图;在本次调查中,B类人数占被调查人数的百分比为;据了解,国家对B类人员每人每年补助155元.已知该县人口数约80万人,请估计该县B类人员每年享受国家补助共多少万元?
图1为平地上一幢建筑物与铁塔图,图2为其示意图.建筑物AB与铁塔CD都 垂直于底面,BD=30m,在A点测得D点的俯角为45°,测得C点的仰角为60°.求铁塔CD 的高度.
如图,有牌面数字都是2,3,4的两组牌.从每组牌中各随机摸出一张,请用画树状图或列表的方法,求摸出的两张牌的牌面数字之和为6的概率.
如图,四边形ABCD是平行四边形,EF分别是BC、AD上的点,∠1=∠2. 求证:△ABE≌△CDF.