如图,抛物线y=ax2+bx-5(a≠0)经过x轴上的点A(1,0)和点B及y轴上的点C,经过B、C两点的直线为y=x+n.
①求抛物线的解析式.
②点P从A出发,在线段AB上以每秒1个单位的速度向B运动,同时点E从B出发,在线段BC上以每秒2个单位的速度向C运动.当其中一个点到达终点时,另一点也停止运动.设运动时间为t秒,求t为何值时,ΔPBE的面积最大并求出最大值.
③过点A作AM⊥BC于点M,过抛物线上一动点N(不与点B、C重合)作直线AM的平行线交直线BC于点Q.若点A、M、N、Q为顶点的四边形是平行四边形,求点N的横坐标.
已知二次函数y= x2-2x. (1)在给定的平面直角坐标系中,画出这个函数的图象; (2)根据图象,写出当y<0时,x的取值范围; (3)若将此图象沿x轴向右平移3个单位,再沿y轴向上平移1个单位,请直接写出平移后图象所对应的函数关系式.
小江玩投掷飞镖的游戏,他设计了一个如图所示的靶子,点E,F分别是矩形ABCD的两边AD,BC上的点,且EF∥AB,点M,N是EF上任意两点,则投掷一次,飞镖落在阴影部分的概率是。
如图,矩形OABC的顶点A、C分别在x、y轴的正半轴上,点D为对角线OB的中点,点E(4,n)在边AB上,反比例函数(k≠0)在第一象限内的图象经过点D、E,且D点的横坐标是它的纵坐标的2倍. (1)求边AB的长; (2)求反比例函数的解析式和n的值; (3)若反比例函数的图象与矩形的边BC交于点F,将矩形折叠,使点O与点F重合,折痕分别与x、y轴正半轴交于点H、G,求线段OG的长.
已知反比例函数的图象与一次函数的图象交于A(﹣1,a)、B(,﹣3)两点,连结AO. (1)求反比例函数和一次函数的表达式; (2)设点C在y轴上,且与点A、O构成等腰三角形,求点C的坐标.
(本题满分分)如图,在△ABC中,∠ABC=90°,D是边AC上的一点,连接BD,使∠A=2∠1,E是BC上的一点,以BE为直径的⊙O经过点D. (1)求证:AC是⊙O的切线; (2)若∠A=60°,⊙O的半径为2,求阴影部分的面积.(结果保留根号和π)