△ABC中,∠A=90°,点D在线段BC上(端点B除外),∠EDB = ∠C,BE⊥DE于点E,DE与AB相交于点F.(1)当AB = AC时(如图1)①∠EBF= ▲ °;②小明在探究过程中发现,线段FD 与BE始终保持一种特殊的数量关系,请你猜想这个关系,并利用所学知识证明猜想的正确性;(2)探究:当AB = kAC时(k>0,如图2),用含k的式子表示线段FD与BE之间的数量关系,请直接写出结果.
写出下列命题的逆命题,并判断其真假: (1)若a=b,则a3=b3; (2)个位数是0的数能被2整除.
写出下列命题的条件和结论,并指出它是真命题还是假命题: (1)有一个角是60°的等腰三角形是等边三角形; (2)等腰三角形底边上的高和底边上的中线、顶角的平分线互相重合.
把命题改写成”如果…那么…”的形式. (1)对顶角相等. (2)两直线平行,同位角相等. (3)等角的余角相等.
某人家的电话号码是八位数,将前四位数组成的数与后四位数组成的数相加得14405,将前三位数组成的数与后五位数组成的数相加得16970,求此人家的电话号码.
某地区举办初中数学联赛,有A,B,C,D四所中学参加,选手中,A,B两校共16名;B,C两校共20名;C,D两校共34名,并且各校选手人数的多少是按A,B,C,D中学的顺序选派的,试求各中学的选手人数.