初中数学

如图,已知抛物线 y = a x 2 + bx ( a 0 ) 过点 A ( 3 3 ) 和点 B ( 3 3 0 ) .过点 A 作直线 AC / / x 轴,交 y 轴于点 C

(1)求抛物线的解析式;

(2)在抛物线上取一点 P ,过点 P 作直线 AC 的垂线,垂足为 D .连接 OA ,使得以 A D P 为顶点的三角形与 ΔAOC 相似,求出对应点 P 的坐标;

(3)抛物线上是否存在点 Q ,使得 S ΔAOC = 1 3 S ΔAOQ ?若存在,求出点 Q 的坐标;若不存在,请说明理由.

来源:2018年四川省绵阳市中考数学试卷
  • 更新:2021-05-23
  • 题型:未知
  • 难度:未知

如图,抛物线 y = x 2 + bx + c x 轴交于点 A ( 2 , 0 ) B ( 1 , 0 ) ,与 y 轴交于点 C

(1)求抛物线的表达式;

(2)作射线 AC ,将射线 AC 绕点 A 顺时针旋转 90 ° 交抛物线于另一点 D ,在射线 AD 上是否存在一点 H ,使 ΔCHB 的周长最小.若存在,求出点 H 的坐标;若不存在,请说明理由;

(3)在(2)的条件下,点 Q 为抛物线的顶点,点 P 为射线 AD 上的一个动点,且点 P 的横坐标为 t ,过点 P x 轴的垂线 l ,垂足为 E ,点 P 从点 A 出发沿 AD 方向运动,直线 l 随之运动,当 2 < t < 1 时,直线 l 将四边形 ABCQ 分割成左右两部分,设在直线 l 左侧部分的面积为 S ,求 S 关于 t 的函数表达式.

来源:2019年广西桂林市中考数学试卷
  • 更新:2021-04-28
  • 题型:未知
  • 难度:未知

如图,直线 y = 3 3 x + 3 分别与 x 轴、 y 轴交于 B C 两点,点 A x 轴上, ACB = 90 ° ,抛物线 y = a x 2 + bx + 3 经过 A B 两点.

(1)求 A B 两点的坐标;

(2)求抛物线的解析式;

(3)点 M 是直线 BC 上方抛物线上的一点,过点 M MH BC 于点 H ,作 MD / / y 轴交 BC 于点 D ,求 ΔDMH 周长的最大值.

来源:2017年山东省东营市中考数学试卷
  • 更新:2021-05-16
  • 题型:未知
  • 难度:未知

如图,直线 y = kx + b ( k b 为常数)分别与 x 轴、 y 轴交于点 A ( 4 , 0 ) B ( 0 , 3 ) ,抛物线 y = x 2 + 2 x + 1 y 轴交于点 C

(1)求直线 y = kx + b 的函数解析式;

(2)若点 P ( x , y ) 是抛物线 y = x 2 + 2 x + 1 上的任意一点,设点 P 到直线 AB 的距离为 d ,求 d 关于 x 的函数解析式,并求 d 取最小值时点 P 的坐标;

(3)若点 E 在抛物线 y = x 2 + 2 x + 1 的对称轴上移动,点 F 在直线 AB 上移动,求 CE + EF 的最小值.

来源:2017年山东省滨州市中考数学试卷
  • 更新:2021-05-16
  • 题型:未知
  • 难度:未知

如图所示,将二次函数 y = x 2 + 2 x + 1 的图象沿 x 轴翻折,然后向右平移1个单位,再向上平移4个单位,得到二次函数 y = a x 2 + bx + c 的图象.函数 y = x 2 + 2 x + 1 的图象的顶点为点 A .函数 y = a x 2 + bx + c 的图象的顶点为点 B ,和 x 轴的交点为点 C D (点 D 位于点 C 的左侧).

(1)求函数 y = a x 2 + bx + c 的解析式;

(2)从点 A C D 三个点中任取两个点和点 B 构造三角形,求构造的三角形是等腰三角形的概率;

(3)若点 M 是线段 BC 上的动点,点 N ΔABC 三边上的动点,是否存在以 AM 为斜边的 Rt Δ AMN ,使 ΔAMN 的面积为 ΔABC 面积的 1 3 ?若存在,求 tan MAN 的值;若不存在,请说明理由.

来源:2018年湖南省邵阳市中考数学试卷
  • 更新:2021-05-09
  • 题型:未知
  • 难度:未知

已知直线 y = x + 3 x 轴、 y 轴分别相交于 A B 两点,抛物线 y = x 2 + bx + c 经过 A B 两点,点 M 在线段 OA 上,从 O 点出发,向点 A 以每秒1个单位的速度匀速运动;同时点 N 在线段 AB 上,从点 A 出发,向点 B 以每秒 2 个单位的速度匀速运动,连接 MN ,设运动时间为 t

(1)求抛物线解析式;

(2)当 t 为何值时, ΔAMN 为直角三角形;

(3)过 N NH / / y 轴交抛物线于 H ,连接 MH ,是否存在点 H 使 MH / / AB ,若存在,求出点 H 的坐标,若不存在,请说明理由.

来源:2018年四川省凉山州中考数学试卷
  • 更新:2021-05-23
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,已知抛物线 y = a x 2 + bx + c x 轴交于 A ( 5 , 0 ) B ( 1 , 0 ) 两点,与 y 轴交于点 C ( 0 , 5 2 )

(1)求抛物线的解析式;

(2)在抛物线上是否存在点 P ,使得 ΔACP 是以点 A 为直角顶点的直角三角形?若存在,求出符合条件的点 P 的坐标;若不存在,请说明理由;

(3)点 G 为抛物线上的一动点,过点 G GE 垂直于 y 轴于点 E ,交直线 AC 于点 D ,过点 D x 轴的垂线,垂足为点 F ,连接 EF ,当线段 EF 的长度最短时,求出点 G 的坐标.

来源:2016年四川省广元市中考数学试卷
  • 更新:2021-04-23
  • 题型:未知
  • 难度:未知

在直角坐标系 xOy 中, A ( 0 , 2 ) B ( 1 , 0 ) ,将 ΔABO 经过旋转、平移变化后得到如图1所示的 ΔBCD

(1)求经过 A B C 三点的抛物线的解析式;

(2)连接 AC ,点 P 是位于线段 BC 上方的抛物线上一动点,若直线 PC ΔABC 的面积分成 1 : 3 两部分,求此时点 P 的坐标;

(3)现将 ΔABO ΔBCD 分别向下、向左以 1 : 2 的速度同时平移,求出在此运动过程中 ΔABO ΔBCD 重叠部分面积的最大值.

来源:2016年四川省乐山市中考数学试卷
  • 更新:2021-04-23
  • 题型:未知
  • 难度:未知

如图,直线 y = 5 x + 5 x 轴于点 A ,交 y 轴于点 C ,过 A C 两点的二次函数 y = a x 2 + 4 x + c 的图象交 x 轴于另一点 B

(1)求二次函数的表达式;

(2)连接 BC ,点 N 是线段 BC 上的动点,作 ND x 轴交二次函数的图象于点 D ,求线段 ND 长度的最大值;

(3)若点 H 为二次函数 y = a x 2 + 4 x + c 图象的顶点,点 M ( 4 , m ) 是该二次函数图象上一点,在 x 轴、 y 轴上分别找点 F E ,使四边形 HEFM 的周长最小,求出点 F E 的坐标.

温馨提示:在直角坐标系中,若点 P Q 的坐标分别为 P ( x 1 y 1 ) Q ( x 2 y 2 )

PQ 平行 x 轴时,线段 PQ 的长度可由公式 PQ = | x 1 x 2 | 求出;

PQ 平行 y 轴时,线段 PQ 的长度可由公式 PQ = | y 1 y 2 | 求出.

来源:2016年贵州省贵阳市中考数学试卷
  • 更新:2021-04-27
  • 题型:未知
  • 难度:未知

如图,以 D 为顶点的抛物线 y = x 2 + bx + c x 轴于 A B 两点,交 y 轴于点 C ,直线 BC 的表达式为 y = x + 3

(1)求抛物线的表达式;

(2)在直线 BC 上有一点 P ,使 PO + PA 的值最小,求点 P 的坐标;

(3)在 x 轴上是否存在一点 Q ,使得以 A C Q 为顶点的三角形与 ΔBCD 相似?若存在,请求出点 Q 的坐标;若不存在,请说明理由.

来源:2018年贵州省毕节市中考数学试卷
  • 更新:2021-04-29
  • 题型:未知
  • 难度:未知

如图,抛物线 y = 2 3 x 2 + bx + c 经过点 B ( 3 , 0 ) C ( 0 , 2 ) ,直线 l : y = 2 3 x 2 3 y 轴于点 E ,且与抛物线交于 A D 两点, P 为抛物线上一动点(不与 A D 重合).

(1)求抛物线的解析式;

(2)当点 P 在直线 l 下方时,过点 P PM / / x 轴交 l 于点 M PN / / y 轴交 l 于点 N ,求 PM + PN 的最大值.

(3)设 F 为直线 l 上的点,以 E C P F 为顶点的四边形能否构成平行四边形?若能,求出点 F 的坐标;若不能,请说明理由.

来源:2017年湖南省岳阳市中考数学试卷
  • 更新:2021-05-06
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,抛物线 y = a x 2 + bx + c x 轴于 A B 两点,交 y 轴于点 C ( 0 , 4 3 ) OA = 1 OB = 4 ,直线 l 过点 A ,交 y 轴于点 D ,交抛物线于点 E ,且满足 tan OAD = 3 4

(1)求抛物线的解析式;

(2)动点 P 从点 B 出发,沿 x 轴正方向以每秒2个单位长度的速度向点 A 运动,动点 Q 从点 A 出发,沿射线 AE 以每秒1个单位长度的速度向点 E 运动,当点 P 运动到点 A 时,点 Q 也停止运动,设运动时间为 t 秒.

①在 P Q 的运动过程中,是否存在某一时刻 t ,使得 ΔADC ΔPQA 相似,若存在,求出 t 的值;若不存在,请说明理由.

②在 P Q 的运动过程中,是否存在某一时刻 t ,使得 ΔAPQ ΔCAQ 的面积之和最大?若存在,求出 t 的值;若不存在,请说明理由.

来源:2018年四川省乐山市中考数学试卷
  • 更新:2021-05-23
  • 题型:未知
  • 难度:未知

如图①,已知 ΔABC 的三个顶点坐标分别为 A ( 1 , 0 ) B ( 3 , 0 ) C ( 0 , 3 ) ,直线 BE y 轴正半轴于点 E

(1)求经过 A B C 三点的抛物线解析式及顶点 D 的坐标;

(2)连接 BD CD ,设 DBO = α EBO = β ,若 tan ( α β ) = 1 ,求点 E 的坐标;

(3)如图②,在(2)的条件下,动点 M 从点 C 出发以每秒 2 个单位的速度在直线 BC 上移动(不考虑点 M 与点 C B 重合的情况),点 N 为抛物线上一点,设点 M 移动的时间为 t 秒,在点 M 移动的过程中,以 E C M N 四个点为顶点的四边形能否成为平行四边形?若能,直接写出所有满足条件的 t 值及点 M 的个数;若不能,请说明理由.

来源:2016年辽宁省营口市中考数学试卷
  • 更新:2021-05-16
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系 xOy 中,平行四边形 ABCD AB 边与 y 轴交于 E 点, F AD 的中点, B C D 的坐标分别为 ( - 2 , 0 ) ( 8 , 0 ) ( 13 , 10 )

(1)求过 B E C 三点的抛物线的解析式;

(2)试判断抛物线的顶点是否在直线 EF 上;

(3)设过 F AB 平行的直线交 y 轴于 Q M 是线段 EQ 之间的动点,射线 BM 与抛物线交于另一点 P ,当 ΔPBQ 的面积最大时,求 P 的坐标.

来源:2021年湖南省常德市中考数学试卷
  • 更新:2021-08-01
  • 题型:未知
  • 难度:未知

如图,抛物线 y = a x 2 + bx + 3 经过点 A ( 1 , 0 ) 和点 B ( 4 , 0 ) ,且与 y 轴相交于点 C .点 D 是线段 BC 上的一个动点(不与点 B C 重合),设点 D 的横坐标为 t ,过点 D DE / / y 轴交抛物线于点 E ,点 F DE 的延长线上,且 EF = DE ,过点 F FG 直线 BC ,垂足为点 G

(1)求此抛物线的解析式和点 C 的坐标;

(2)设 ΔDFG 的周长为 L ,求 L 关于 t 的函数关系式;

(3)直线 m 经过点 C ,且直线 m / / x 轴,点 P 是直线 m 上任意一点,过点 P 分别作 PQ 直线 BC PR x 轴,垂足分别为点 Q R ,若以三点 P Q R 为顶点的三角形是等腰三角形,请直接写出点 P 的坐标.

来源:2016年辽宁省铁岭市中考数学试卷
  • 更新:2021-05-15
  • 题型:未知
  • 难度:未知

初中数学二次函数的性质解答题