如图所示,将二次函数 y = x 2 + 2 x + 1 的图象沿 x 轴翻折,然后向右平移1个单位,再向上平移4个单位,得到二次函数 y = a x 2 + bx + c 的图象.函数 y = x 2 + 2 x + 1 的图象的顶点为点 A .函数 y = a x 2 + bx + c 的图象的顶点为点 B ,和 x 轴的交点为点 C , D (点 D 位于点 C 的左侧).
(1)求函数 y = a x 2 + bx + c 的解析式;
(2)从点 A , C , D 三个点中任取两个点和点 B 构造三角形,求构造的三角形是等腰三角形的概率;
(3)若点 M 是线段 BC 上的动点,点 N 是 ΔABC 三边上的动点,是否存在以 AM 为斜边的 Rt Δ AMN ,使 ΔAMN 的面积为 ΔABC 面积的 1 3 ?若存在,求 tan ∠ MAN 的值;若不存在,请说明理由.
如图,AB为一棵大树,在树上距地面10m的D处有两只猴子,它们同时发现地面上的C处有一筐水果,一只猴子从D处上爬到树顶A处,利用拉在A处的滑绳AC,滑到C处,另一只猴子从D处滑到地面B,再由B跑到C,已知两猴子所经路程都是15m,求树高AB.
如图,E、F分别是正方形ABCD中BC和CD边上的点,且AB=4,CE=BC,F为CD的中点,连接AF、AE,问△AEF是什么三角形?请说明理由.
如图,已知四边形ABCD中,∠B=90°,AB=3,BC=4,CD=12,AD=13,求四边形ABCD的面积.
甲、乙两位探险者到沙漠进行探险,没有了水,需要寻找水源.为了不致于走散,他们用两部对话机联系,已知对话机的有效距离为15千米.早晨8:00甲先出发,他以6千米/时的速度向东行走,1小时后乙出发,他以5千米/时的速度向北行进,上午10:00,甲、乙二人相距多远?还能保持联系吗?
如图,某会展中心在会展期间准备将高5m,长13m,宽2m的楼道上铺地毯,已知地毯平方米18元,请你帮助计算一下,铺完这个楼道至少需要多少元钱?