如图,已知抛物线 与 轴交于 , 两点,与 轴交于点 ,点 的坐标为
(1)求 的值及抛物线的顶点坐标.
(2)点 是抛物线对称轴 上的一个动点,当 的值最小时,求点 的坐标.
如图,抛物线 经过点 和 ,与两坐标轴的交点分别为 , , ,它的对称轴为直线 .
(1)求该抛物线的表达式;
(2) 是该抛物线上的点,过点 作 的垂线,垂足为 , 是 上的点.要使以 、 、 为顶点的三角形与 全等,求满足条件的点 ,点 的坐标.
如图,已知二次函数 , 为常数)的图象经过点 ,点 ,顶点为点 ,过点 作 轴,交 轴于点 ,交该二次函数图象于点 ,连接 .
(1)求该二次函数的解析式及点 的坐标;
(2)若将该二次函数图象向下平移 个单位,使平移后得到的二次函数图象的顶点落在 的内部(不包括 的边界),求 的取值范围;
(3)点 是直线 上的动点,若点 ,点 ,点 所构成的三角形与 相似,请直接写出所有点 的坐标(直接写出结果,不必写解答过程).
已知关于 的一元二次方程 .
(1)若方程有两个不相等的实数根,求 的取值范围;
(2)二次函数 的部分图象如图所示,求一元二次方程 的解.
已知关于 的一元二次方程 .
(1)求证:无论 为任何非零实数,此方程总有两个实数根;
(2)若抛物线 与 轴交于 , 、 , 两点,且 ,求 的值;
(3)若 ,点 与 在(2)中的抛物线上(点 、 不重合),求代数式 的值.
如图,在平面直角坐标系中,二次函数 的图象与 轴交于 、 两点,与 轴交于点 ,其顶点为 ,连接 、 、 ,过点 作 轴的垂线 .
(1)求点 , 的坐标;
(2)直线 上是否存在点 ,使 的面积等于 的面积的2倍?若存在,求出点 的坐标;若不存在,请说明理由.
如图,已知抛物线 的图象的顶点坐标是 ,并且经过点 ,直线 与抛物线交于 , 两点,以 为直径作圆,圆心为点 ,圆 与直线 交于对称轴右侧的点 ,直线 上每一点的纵坐标都等于1.
(1)求抛物线的解析式;
(2)证明:圆 与 轴相切;
(3)过点 作 ,垂足为 ,再过点 作 ,垂足为 ,求 的值.
如图1,在平面直角坐标系中, 的顶点 , 分别是直线 与坐标轴的交点,点 的坐标为 ,点 是边 上的一点, 于点 ,点 在边 上,且 , 两点关于 轴上的某点成中心对称,连结 , .设点 的横坐标为 , 为 ,请探究:
①线段 长度是否有最小值.
② 能否成为直角三角形.
小明尝试用“观察 猜想 验证 应用”的方法进行探究,请你一起来解决问题.
(1)小明利用“几何画板”软件进行观察,测量,得到 随 变化的一组对应值,并在平面直角坐标系中以各对应值为坐标描点(如图 .请你在图2中连线,观察图象特征并猜想 与 可能满足的函数类别.
(2)小明结合图1,发现应用三角形和函数知识能验证(1)中的猜想,请你求出 关于 的函数表达式及自变量的取值范围,并求出线段 长度的最小值.
(3)小明通过观察,推理,发现 能成为直角三角形,请你求出当 为直角三角形时 的值.
如图,已知二次函数的图象与 轴交于 、 两点, 为顶点,其中点 的坐标为 ,点 的坐标为 .
(1)求该二次函数的表达式;
(2)点 是线段 上的一点,过点 作 轴的垂线,垂足为 ,且 ,求点 的坐标.
(3)试问在该二次函数图象上是否存在点 ,使得 的面积是 的面积的 ?若存在,求出点 的坐标;若不存在,请说明理由.
如图,在平面直角坐标系中,二次函数 的图象与 轴交于点 、 (点 在点 的左侧),与 轴交于点 ,过其顶点 作直线 轴,垂足为点 ,连接 、 .
(1)求点 、 、 的坐标;
(2)若 与 相似,求 的值;
(3)点 、 、 、 能否在同一个圆上?若能,求出 的值;若不能,请说明理由.
已知抛物线 经过点 .
(1)求抛物线的函数表达式和顶点坐标.
(2)直线 交抛物线于点 , , 为正数.若点 在抛物线上且在直线 下方(不与点 , 重合),分别求出点 横坐标与纵坐标的取值范围.
如图,已知经过原点的抛物线 与 轴交于另一点 .
(1)求 的值和抛物线顶点 的坐标;
(2)求直线 的解析式.
已知抛物线 .
(1)求这条抛物线的对称轴;
(2)若该抛物线的顶点在 轴上,求其解析式;
(3)设点 , 在抛物线上,若 ,求 的取值范围.
如图,抛物线 与 轴正半轴, 轴正半轴分别交于点 , ,且 ,点 为抛物线的顶点.
(1)求抛物线的解析式及点 的坐标;
(2)点 , 为抛物线上两点(点 在点 的左侧),且到对称轴的距离分别为3个单位长度和5个单位长度,点 为抛物线上点 , 之间(含点 , 的一个动点,求点 的纵坐标 的取值范围.