初中数学

如图,已知抛物线 y = x 2 + mx + 3 x 轴交于 A B 两点,与 y 轴交于点 C ,点 B 的坐标为 ( 3 , 0 )

(1)求 m 的值及抛物线的顶点坐标.

(2)点 P 是抛物线对称轴 l 上的一个动点,当 PA + PC 的值最小时,求点 P 的坐标.

来源:2016年浙江省宁波市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

如图,抛物线 y = x 2 + bx + c 经过点 ( 3 , 12 ) ( - 2 , - 3 ) ,与两坐标轴的交点分别为 A B C ,它的对称轴为直线 l

(1)求该抛物线的表达式;

(2) P 是该抛物线上的点,过点 P l 的垂线,垂足为 D E l 上的点.要使以 P D E 为顶点的三角形与 ΔAOC 全等,求满足条件的点 P ,点 E 的坐标.

来源:2020年陕西省中考数学试卷
  • 更新:2021-05-25
  • 题型:未知
  • 难度:未知

如图,已知二次函数 y = x 2 + bx + c ( b c 为常数)的图象经过点 A ( 3 , 1 ) ,点 C ( 0 , 4 ) ,顶点为点 M ,过点 A AB / / x 轴,交 y 轴于点 D ,交该二次函数图象于点 B ,连接 BC

(1)求该二次函数的解析式及点 M 的坐标;

(2)若将该二次函数图象向下平移 m ( m > 0 ) 个单位,使平移后得到的二次函数图象的顶点落在 ΔABC 的内部(不包括 ΔABC 的边界),求 m 的取值范围;

(3)点 P 是直线 AC 上的动点,若点 P ,点 C ,点 M 所构成的三角形与 ΔBCD 相似,请直接写出所有点 P 的坐标(直接写出结果,不必写解答过程).

来源:2016年浙江省湖州市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

已知关于 x 的一元二次方程 x 2 + x - m = 0

(1)若方程有两个不相等的实数根,求 m 的取值范围;

(2)二次函数 y = x 2 + x - m 的部分图象如图所示,求一元二次方程 x 2 + x - m = 0 的解.

来源:2021年四川省乐山市中考数学试卷
  • 更新:2021-08-16
  • 题型:未知
  • 难度:未知

已知关于 x 的一元二次方程 m x 2 + ( 1 5 m ) x 5 = 0 ( m 0 )

(1)求证:无论 m 为任何非零实数,此方程总有两个实数根;

(2)若抛物线 y = m x 2 + ( 1 5 m ) x 5 x 轴交于 A ( x 1 0 ) B ( x 2 0 ) 两点,且 | x 1 x 2 | = 6 ,求 m 的值;

(3)若 m > 0 ,点 P ( a , b ) Q ( a + n , b ) 在(2)中的抛物线上(点 P Q 不重合),求代数式 4 a 2 n 2 + 8 n 的值.

来源:2018年四川省乐山市中考数学试卷
  • 更新:2021-05-23
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,二次函数 y = x 2 + 6 x 5 的图象与 x 轴交于 A B 两点,与 y 轴交于点 C ,其顶点为 P ,连接 PA AC CP ,过点 C y 轴的垂线 l

(1)求点 P C 的坐标;

(2)直线 l 上是否存在点 Q ,使 ΔPBQ 的面积等于 ΔPAC 的面积的2倍?若存在,求出点 Q 的坐标;若不存在,请说明理由.

来源:2018年江苏省徐州市中考数学试卷
  • 更新:2021-05-25
  • 题型:未知
  • 难度:未知

如图,已知抛物线 y = a x 2 + bx + c ( a 0 ) 的图象的顶点坐标是 ( 2 , 1 ) ,并且经过点 ( 4 , 2 ) ,直线 y = 1 2 x + 1 与抛物线交于 B D 两点,以 BD 为直径作圆,圆心为点 C ,圆 C 与直线 m 交于对称轴右侧的点 M ( t , 1 ) ,直线 m 上每一点的纵坐标都等于1.

(1)求抛物线的解析式;

(2)证明:圆 C x 轴相切;

(3)过点 B BE m ,垂足为 E ,再过点 D DF m ,垂足为 F ,求 BE : MF 的值.

来源:2017年四川省绵阳市中考数学试卷
  • 更新:2021-05-23
  • 题型:未知
  • 难度:未知

如图1,在平面直角坐标系中, ΔABC 的顶点 A C 分别是直线 y = - 8 3 x + 4 与坐标轴的交点,点 B 的坐标为 ( - 2 , 0 ) ,点 D 是边 AC 上的一点, DE BC 于点 E ,点 F 在边 AB 上,且 D F 两点关于 y 轴上的某点成中心对称,连结 DF EF .设点 D 的横坐标为 m E F 2 l ,请探究:

①线段 EF 长度是否有最小值.

ΔBEF 能否成为直角三角形.

小明尝试用“观察 - 猜想 - 验证 - 应用”的方法进行探究,请你一起来解决问题.

(1)小明利用“几何画板”软件进行观察,测量,得到 l m 变化的一组对应值,并在平面直角坐标系中以各对应值为坐标描点(如图 2 ) .请你在图2中连线,观察图象特征并猜想 l m 可能满足的函数类别.

(2)小明结合图1,发现应用三角形和函数知识能验证(1)中的猜想,请你求出 l 关于 m 的函数表达式及自变量的取值范围,并求出线段 EF 长度的最小值.

(3)小明通过观察,推理,发现 ΔBEF 能成为直角三角形,请你求出当 ΔBEF 为直角三角形时 m 的值.

来源:2020年浙江省衢州市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图,已知二次函数的图象与 x 轴交于 A B 两点, D 为顶点,其中点 B 的坐标为 ( 5 , 0 ) ,点 D 的坐标为 ( 1 , 3 )

(1)求该二次函数的表达式;

(2)点 E 是线段 BD 上的一点,过点 E x 轴的垂线,垂足为 F ,且 ED = EF ,求点 E 的坐标.

(3)试问在该二次函数图象上是否存在点 G ,使得 ΔADG 的面积是 ΔBDG 的面积的 3 5 ?若存在,求出点 G 的坐标;若不存在,请说明理由.

来源:2019年江苏省淮安市中考数学试卷
  • 更新:2021-05-21
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,二次函数 y = ( x a ) ( x 3 ) ( 0 < a < 3 ) 的图象与 x 轴交于点 A B (点 A 在点 B 的左侧),与 y 轴交于点 D ,过其顶点 C 作直线 CP x 轴,垂足为点 P ,连接 AD BC

(1)求点 A B D 的坐标;

(2)若 ΔAOD ΔBPC 相似,求 a 的值;

(3)点 D O C B 能否在同一个圆上?若能,求出 a 的值;若不能,请说明理由.

来源:2018年江苏省宿迁市中考数学试卷
  • 更新:2021-05-25
  • 题型:未知
  • 难度:未知

已知抛物线 y = a x 2 - 2 ax - 8 ( a 0 ) 经过点 ( - 2 , 0 )

(1)求抛物线的函数表达式和顶点坐标.

(2)直线 l 交抛物线于点 A ( - 4 , m ) B ( n , 7 ) n 为正数.若点 P 在抛物线上且在直线 l 下方(不与点 A B 重合),分别求出点 P 横坐标与纵坐标的取值范围.

来源:2021年浙江省温州市中考数学试卷
  • 更新:2021-08-17
  • 题型:未知
  • 难度:未知

如图,已知经过原点的抛物线 y = 2 x 2 + mx x 轴交于另一点 A ( 2 , 0 )

(1)求 m 的值和抛物线顶点 M 的坐标;

(2)求直线 AM 的解析式.

来源:2021年浙江省湖州市中考数学试卷
  • 更新:2021-08-17
  • 题型:未知
  • 难度:未知

已知抛物线 y = a x 2 - 2 ax - 3 + 2 a 2 ( a 0 )

(1)求这条抛物线的对称轴;

(2)若该抛物线的顶点在 x 轴上,求其解析式;

(3)设点 P ( m , y 1 ) Q ( 3 , y 2 ) 在抛物线上,若 y 1 < y 2 ,求 m 的取值范围.

来源:2020年山东省临沂市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图,抛物线 y = - x 2 + 2 x + c x 轴正半轴, y 轴正半轴分别交于点 A B ,且 OA = OB ,点 G 为抛物线的顶点.

(1)求抛物线的解析式及点 G 的坐标;

(2)点 M N 为抛物线上两点(点 M 在点 N 的左侧),且到对称轴的距离分别为3个单位长度和5个单位长度,点 Q 为抛物线上点 M N 之间(含点 M N ) 的一个动点,求点 Q 的纵坐标 y Q 的取值范围.

来源:2020年河南省中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

定义:如图1,抛物线 y = a x 2 + bx + c ( a 0 ) x 轴交于 A B 两点,点 P 在该抛物线上 ( P 点与 A B 两点不重合),如果 ΔABP 的三边满足 A P 2 + B P 2 = A B 2 ,则称点 P 为抛物线 y = a x 2 + bx + c ( a 0 ) 的勾股点.

(1)直接写出抛物线 y = x 2 + 1 的勾股点的坐标.

(2)如图2,已知抛物线 C : y = a x 2 + bx ( a 0 ) x 轴交于 A B 两点,点 P ( 1 , 3 ) 是抛物线 C 的勾股点,求抛物线 C 的函数表达式.

(3)在(2)的条件下,点 Q 在抛物线 C 上,求满足条件 S ΔABQ = S ΔABP Q 点(异于点 P ) 的坐标.

来源:2017年浙江省衢州市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

初中数学二次函数的性质解答题