如图,在平面直角坐标系中,二次函数 的图象与 轴交于 、 两点,与 轴交于点 ,其顶点为 ,连接 、 、 ,过点 作 轴的垂线 .
(1)求点 , 的坐标;
(2)直线 上是否存在点 ,使 的面积等于 的面积的2倍?若存在,求出点 的坐标;若不存在,请说明理由.
如图1,在平面直角坐标系中, 的顶点 , 分别是直线 与坐标轴的交点,点 的坐标为 ,点 是边 上的一点, 于点 ,点 在边 上,且 , 两点关于 轴上的某点成中心对称,连结 , .设点 的横坐标为 , 为 ,请探究:
①线段 长度是否有最小值.
② 能否成为直角三角形.
小明尝试用“观察 猜想 验证 应用”的方法进行探究,请你一起来解决问题.
(1)小明利用“几何画板”软件进行观察,测量,得到 随 变化的一组对应值,并在平面直角坐标系中以各对应值为坐标描点(如图 .请你在图2中连线,观察图象特征并猜想 与 可能满足的函数类别.
(2)小明结合图1,发现应用三角形和函数知识能验证(1)中的猜想,请你求出 关于 的函数表达式及自变量的取值范围,并求出线段 长度的最小值.
(3)小明通过观察,推理,发现 能成为直角三角形,请你求出当 为直角三角形时 的值.
如图,在平面直角坐标系中,二次函数 的图象与 轴交于点 、 (点 在点 的左侧),与 轴交于点 ,过其顶点 作直线 轴,垂足为点 ,连接 、 .
(1)求点 、 、 的坐标;
(2)若 与 相似,求 的值;
(3)点 、 、 、 能否在同一个圆上?若能,求出 的值;若不能,请说明理由.
如图,二次函数 为常数)的图象的对称轴为直线 .
(1)求 的值.
(2)向下平移该二次函数的图象,使其经过原点,求平移后图象所对应的二次函数的表达式.
已知二次函数 为常数).
(1)求证:不论 为何值,该函数的图象与 轴总有公共点;
(2)当 取什么值时,该函数的图象与 轴的交点在 轴的上方?
如图,在平面直角坐标系中,已知二次函数 图象的顶点为 ,与 轴交于点 ,异于顶点 的点 在该函数图象上.
(1)当 时,求 的值.
(2)当 时,若点 在第一象限内,结合图象,求当 时,自变量 的取值范围.
(3)作直线 与 轴相交于点 .当点 在 轴上方,且在线段 上时,求 的取值范围.
如图,抛物线 交 轴正半轴于点 ,直线 经过抛物线的顶点 .已知该抛物线的对称轴为直线 ,交 轴于点 .
(1)求 , 的值.
(2) 是第一象限内抛物线上的一点,且在对称轴的右侧,连接 , .设点 的横坐标为 , 的面积为 ,记 .求 关于 的函数表达式及 的范围.
已知,在平面直角坐标系中,抛物线 的顶点为 .点 的坐标为 .
(1)求抛物线过点 时顶点 的坐标;
(2)点 的坐标记为 ,求 与 的函数表达式;
(3)已知 点的坐标为 ,当 取何值时,抛物线 与线段 只有一个交点.
已知,点 为二次函数 图象的顶点,直线 分别交 轴正半轴, 轴于点 , .
(1)判断顶点 是否在直线 上,并说明理由.
(2)如图1,若二次函数图象也经过点 , ,且 ,根据图象,写出 的取值范围.
(3)如图2,点 坐标为 ,点 在 内,若点 , , , 都在二次函数图象上,试比较 与 的大小.
在平面直角坐标系中,已知点 , , ,直线 经过点 ,抛物线 恰好经过 , , 三点中的两点.
(1)判断点 是否在直线 上,并说明理由;
(2)求 , 的值;
(3)平移抛物线 ,使其顶点仍在直线 上,求平移后所得抛物线与 轴交点纵坐标的最大值.
已知抛物线 经过点 .
(1)求抛物线的函数表达式和顶点坐标.
(2)直线 交抛物线于点 , , 为正数.若点 在抛物线上且在直线 下方(不与点 , 重合),分别求出点 横坐标与纵坐标的取值范围.
如图,已知经过原点的抛物线 与 轴交于另一点 .
(1)求 的值和抛物线顶点 的坐标;
(2)求直线 的解析式.
已知抛物线 .
(1)求这条抛物线的对称轴;
(2)若该抛物线的顶点在 轴上,求其解析式;
(3)设点 , 在抛物线上,若 ,求 的取值范围.
如图,抛物线 与 轴正半轴, 轴正半轴分别交于点 , ,且 ,点 为抛物线的顶点.
(1)求抛物线的解析式及点 的坐标;
(2)点 , 为抛物线上两点(点 在点 的左侧),且到对称轴的距离分别为3个单位长度和5个单位长度,点 为抛物线上点 , 之间(含点 , 的一个动点,求点 的纵坐标 的取值范围.