已知,点 M 为二次函数 y = − ( x − b ) 2 + 4 b + 1 图象的顶点,直线 y = mx + 5 分别交 x 轴正半轴, y 轴于点 A , B .
(1)判断顶点 M 是否在直线 y = 4 x + 1 上,并说明理由.
(2)如图1,若二次函数图象也经过点 A , B ,且 mx + 5 > − ( x − b ) 2 + 4 b + 1 ,根据图象,写出 x 的取值范围.
(3)如图2,点 A 坐标为 ( 5 , 0 ) ,点 M 在 ΔAOB 内,若点 C ( 1 4 , y 1 ) , D ( 3 4 , y 2 ) 都在二次函数图象上,试比较 y 1 与 y 2 的大小.
先化简再求值:,其中x满足。
解不等式组,并把解集在数轴上表示出来。
“五一”期间,小红随父母外出游玩,带了2件上衣和3条长裤(把衣服和裤子分别装在两个袋子里),上衣颜色有红色、黄色,长裤有红色、黑色、黄色,问: (1)小明随意拿出一条裤子和一件上衣配成一套,列出所有可能出现的结果; (2)配好一套衣服,小明正好拿到黑色长裤的概率是多少? (3)他任意拿出一件上衣和一条长裤穿上,颜色正好相同的概率是多少?
已知,如图所示,正方形ABCD,E、M、F、N分别是AD、AB、BC、CD上的点,若EF⊥MN,求证:EF=MN.
先化简,再求值:(2a+1)2﹣2(2a+1)+3,其中a=.