已知,点 M 为二次函数 y = − ( x − b ) 2 + 4 b + 1 图象的顶点,直线 y = mx + 5 分别交 x 轴正半轴, y 轴于点 A , B .
(1)判断顶点 M 是否在直线 y = 4 x + 1 上,并说明理由.
(2)如图1,若二次函数图象也经过点 A , B ,且 mx + 5 > − ( x − b ) 2 + 4 b + 1 ,根据图象,写出 x 的取值范围.
(3)如图2,点 A 坐标为 ( 5 , 0 ) ,点 M 在 ΔAOB 内,若点 C ( 1 4 , y 1 ) , D ( 3 4 , y 2 ) 都在二次函数图象上,试比较 y 1 与 y 2 的大小.
解下列不等式组:
计算:
小慧和小华玩猜数游戏,小慧对小华说:“你想好一个数,这个数乘以6,加上3;得到的数除以3,再减去你想的数.只要你告诉我正确的结果,我就知道你想的数是几.”小华很好奇,就想了一个数,并按小慧说的方法计算出结果,告诉小慧说:“我计算结果是 -2.” 请你解决以下问题: (1)小慧可以猜出小华想的数是. (2)请你用代数方法说明,小慧为什么总能猜出别人(不一定是小华)想的数. (3)请你也设计一个猜数游戏,要求是:让对方想一个数,按你规定的方法运算,然后你可以猜出对方的计算结果.
如图,已知OA⊥OD,∠FOD=2∠COD,OB平分∠AOC,OE平分∠COF. (1)若∠COD=30°,求∠BOE的度数; (2)若∠BOE=85°,求∠COD的度数.(提示:设∠COD=°)
一种长方形餐桌的四周可以坐6人用餐(带阴影的小长方形表示1个人的位置).现把n张这样的餐桌按如图方式拼接起来. (1)问四周可以坐多少人用餐?(用n的代数式表示) (2)若有18人用餐,至少需要多少张这样的餐桌?