定义:如图1,抛物线 y = a x 2 + bx + c ( a ≠ 0 ) 与 x 轴交于 A , B 两点,点 P 在该抛物线上 ( P 点与 A 、 B 两点不重合),如果 ΔABP 的三边满足 A P 2 + B P 2 = A B 2 ,则称点 P 为抛物线 y = a x 2 + bx + c ( a ≠ 0 ) 的勾股点.
(1)直接写出抛物线 y = − x 2 + 1 的勾股点的坐标.
(2)如图2,已知抛物线 C : y = a x 2 + bx ( a ≠ 0 ) 与 x 轴交于 A , B 两点,点 P ( 1 , 3 ) 是抛物线 C 的勾股点,求抛物线 C 的函数表达式.
(3)在(2)的条件下,点 Q 在抛物线 C 上,求满足条件 S ΔABQ = S ΔABP 的 Q 点(异于点 P ) 的坐标.
(本题12分)在△ABC中,AB=AC,D是直线BC上一点(不与点B、C重合),以AD为一边在AD的右侧作△ADE,AD=AE,∠DAE=∠BAC,连接CE. (1)如图1,当点D在线段BC上时,求证:△ABD≌△ACE. (2)设∠BAC=α,∠BCE=β. ①如图1,当点D在线段BC上时,则α,β之间有怎样的数量关系?写出证明过程; ②当点D在直线BC上时,则α,β之间有怎样的数量关系?请画出图形并直接写出你的结论.
(本题10分)如图,设∠BAC=(0°<<90°).现把小棒依次摆放在两射线之间,并使小棒两端分别落在射线AB,AC上.从点A开始,用等长的小棒依次向右摆放,其中 AA 为第一根小棒,且 AA=AA (1)小棒能无限摆下去吗?答:.(填“能”或“不能”) (2)若已经摆放了3根小棒,则1 =,2=, 3=;(用含的式子表示) (3)若只能摆放4根小棒,求的范围.
(本题10分)已知,如图,四边形ABCD中,∠ABC=∠ADC=90°,M、N分别是AC、BD的中点, 求证:(1)MD=MB;(2)MN⊥BD
(本题10分)已知M、N是线段AB的垂直平分线上的两点,且∠MBA=60°,∠NBA=15°,先画出图形,再求∠MAN。
(本题10分)如图,在△ABC中, AB = AC,点D在BC上,且AD = BD。 (1)找出相等的角并说明理由; (2)若∠ADC=70° ,求∠BAC的度数。