无论k取任何实数,对于直线都会经过一个固定的点,我们就称直线恒过定点.(1)无论取任何实数,抛物线恒过定点,直接写出定点A的坐标;(2)已知△ABC的一个顶点是(1)中的定点,且∠B,∠C的角平分线分别是y轴和直线,求边BC所在直线的表达式;(3)求△ABC内切圆的半径.
如图,已知AD⊥AB,DE平分∠ADC,CE平分∠BCD,且∠1+∠2=90°,那么BC⊥AB,说明理由。
如图所示,直角坐标系中,△ABC的顶点都在网格点上,其中C点坐标为(1,2).写出点A、B的坐标;将△ABC先向左平移2个单位长度,再向上平移1个单位长度,得到△A′B′C′,分别写出△A′B′C′的三个顶点坐标;
如图所示,将△ABC沿EF折叠,使点C落到点C′处,试探求∠1,∠2与∠C的关系.
如图所示,直线a,b被直线c所截,且∠1+∠2=180°,直线a与直线b平行吗?为什么?
如图抛物线过坐标原点O和x轴上另一点E,顶点M为 (2,4);矩形ABCD顶点A与点O重合,AD、AB分别在x轴、y轴上,且AD=2,AB=3. 求该抛物线所对应的函数关系式;将矩形ABCD以每秒1个单位长度的速从图示位置沿x轴正方向匀速平行移动,同时一动点P也以相同速度从点A出发向B匀速移动,设它们运动时间为t秒(0≤t≤3),直线AB与该抛物线交点为N①当t=时,判断点P是否在直线ME上,说明理由;②设以P、N、C、D为顶点的多边形面积为S,试问S是否存在最大值?说明理由.