已知关于 x 的一元二次方程 m x 2 + ( 1 − 5 m ) x − 5 = 0 ( m ≠ 0 ) .
(1)求证:无论 m 为任何非零实数,此方程总有两个实数根;
(2)若抛物线 y = m x 2 + ( 1 − 5 m ) x − 5 与 x 轴交于 A ( x 1 , 0 ) 、 B ( x 2 , 0 ) 两点,且 | x 1 − x 2 | = 6 ,求 m 的值;
(3)若 m > 0 ,点 P ( a , b ) 与 Q ( a + n , b ) 在(2)中的抛物线上(点 P 、 Q 不重合),求代数式 4 a 2 − n 2 + 8 n 的值.
解方程:.
如图,在平面直角坐标系中,点A,B的坐标分别是(-3,0),(0,6),动点P从点O出发,沿x轴正方向以每秒1个单位的速度运动,同时动点C从点B出发,沿射线BO方向以每秒2个单位的速度运动。以CP,CO为邻边构造□PCOD,在线段OP延长线上取点E,使PE=AO,设点P运动的时间为秒. (1)当点C运动到线段OB的中点时,求的值及点E的坐标; (2)当点C在线段OB上时,求证:四边形ADEC为平行四边形; (3)在线段PE上取点F,使PF=1,过点F作MN⊥PE,截取FM=2,FN=1,且点M,N分别在第一、四象限,在运动过程中,设□PCOD的面积为S. ①当点M,N中,有一点落在四边形ADEC的边上时,求出所有满足条件的的值; ②若点M,N中恰好只有一个点落在四边形ADEC内部(不包括边界)时,直接写出S的取值范围.
八(1)班五位同学参加学校举办的数学竞赛,试卷中共有20道题,规定每题答对得5分,答错扣2分,未答得0分。赛后A,B, C,D,E五位同学对照评分标准回忆并记录了自己的答题情况(E同学只记得有7道题未答),具体如下表:
(1)根据以上信息,求A,B,C,D四位同学成绩的平均分; (2)最后获知:A,B,C,D,E五位同学成绩分别是95分,81分,64分,83分,58分. ①求E同学的答对题数和答错题数; ②经计算,A,B,C,D四位同学实际成绩平均分是80.75分,与(1)中算得的平均分不相符,发现是其中一位同学记错了自己的答题情况.请指出哪位同学记错了,并写出他的实际答题情况(直接写出答案即可).
勾股定理神秘而美妙,它的证法多样,其巧妙各有不同,其中的“面积法”给了小聪以灵感。他惊喜地发现:当两个全等的直角三角形如图1或图2摆放时,都可以用“面积法”来证明.下面是小聪利用图1证明勾股定理的过程: 将两个全等的直角三角形按图1所示摆放,其中∠DAB=90°,求证:. 证明:连结DB,过点D作BC边上的高DF, 则DF=EC=, ∵, 又∵, ∴, ∴ 请参照上述证法,利用图2完成下面的证明: 将两个全等的直角三角形按图2所示摆放,其中∠DAB=90°. 求证:. 证明:连结, ∵, 又∵, ∴. ∴.
如图,抛物线与x轴交于A,B两点,它们的对称轴与x轴交于点N,过顶点M作ME⊥y轴于点E,连结BE交MN于点F.已知点A的坐标为(﹣1,0). (1)求该抛物线的解析式及顶点M的坐标; (2)求△EMF与△BNF的面积之比.