已知关于 x 的一元二次方程 m x 2 + ( 1 − 5 m ) x − 5 = 0 ( m ≠ 0 ) .
(1)求证:无论 m 为任何非零实数,此方程总有两个实数根;
(2)若抛物线 y = m x 2 + ( 1 − 5 m ) x − 5 与 x 轴交于 A ( x 1 , 0 ) 、 B ( x 2 , 0 ) 两点,且 | x 1 − x 2 | = 6 ,求 m 的值;
(3)若 m > 0 ,点 P ( a , b ) 与 Q ( a + n , b ) 在(2)中的抛物线上(点 P 、 Q 不重合),求代数式 4 a 2 − n 2 + 8 n 的值.
如图,若将△ABC的绕点C顺时针旋转 90°后得到△DEC,则A点的对应点D的坐标是 ,B点的对应点E的坐标是 ,请画出旋转后的△DEC(不要求写画法) .
如图,AB是⊙O的弦,半径OC、OD分别交AB与点E、F,且AE=BF,请你找出线段OE、OF的数量关系,并给予证明.
解方程:
计算:
用甲.乙两种原料配制成某种饮料,已知这两种原料的维生素C的含量及购买这两种原料的价格如下表:
(1)现配制这种饮料10千克,要求至少含有4200单位的维生素C,试写出所需甲种原料的质量x(千克)应满足的不等式. (2)如果还要求购买甲.乙两种原料的费用不超过72元,那么你能写出x(千克)应满足的另一个不等式吗?