初中数学

如图,在平面直角坐标系中,抛物线 y = a x 2 + bx 2 x 轴交于点 A B (点 A 在点 B 的左侧),与 y 轴交于点 C ( 0 , 2 ) OB = 4 OA tan BCO = 2

(1)求 A B 两点的坐标;

(2)求抛物线的解析式;

(3)点 M N 分别是线段 BC AB 上的动点,点 M 从点 B 出发以每秒 5 2 个单位的速度向点 C 运动,同时点 N 从点 A 出发以每秒2个单位的速度向点 B 运动,当点 M N 中的一点到达终点时,两点同时停止运动.过点 M MP x 轴于点 E ,交抛物线于点 P .设点 M 、点 N 的运动时间为 t ( s ) ,当 t 为多少时, ΔPNE 是等腰三角形?

来源:2018年四川省巴中市中考数学试卷
  • 更新:2021-05-23
  • 题型:未知
  • 难度:未知

如图,抛物线 y = x 2 + bx + c x 轴交于 A B 两点, B 点坐标为 ( 3 , 0 ) ,与 y 轴交于点 C ( 0 , 3 )

(1)求抛物线的解析式;

(2)点 P 在抛物线位于第四象限的部分上运动,当四边形 ABPC 的面积最大时,求点 P 的坐标和四边形 ABPC 的最大面积.

(3)直线 l 经过 A C 两点,点 Q 在抛物线位于 y 轴左侧的部分上运动,直线 m 经过点 B 和点 Q ,是否存在直线 m ,使得直线 l m x 轴围成的三角形和直线 l m y 轴围成的三角形相似?若存在,求出直线 m 的解析式,若不存在,请说明理由.

来源:2016年四川省攀枝花市中考数学试卷
  • 更新:2021-04-23
  • 题型:未知
  • 难度:未知

如图,已知抛物线 y = a x 2 + bx + 5 经过 A ( - 5 , 0 ) B ( - 4 , - 3 ) 两点,与 x 轴的另一个交点为 C ,顶点为 D ,连接 CD

(1)求该抛物线的表达式;

(2)点 P 为该抛物线上一动点(与点 B C 不重合),设点 P 的横坐标为 t

①当点 P 在直线 BC 的下方运动时,求 ΔPBC 的面积的最大值;

②该抛物线上是否存在点 P ,使得 PBC = BCD ?若存在,求出所有点 P 的坐标;若不存在,请说明理由.

来源:2019年海南省中考数学试卷
  • 更新:2021-05-18
  • 题型:未知
  • 难度:未知

如图,抛物线与 x 轴交于点 A ( 5 , 0 ) 和点 B ( 3 , 0 ) .与 y 轴交于点 C ( 0 , 5 ) .有一宽度为1,长度足够的矩形(阴影部分)沿 x 轴方向平移,与 y 轴平行的一组对边交抛物线于点 P Q ,交直线 AC 于点 M N .交 x 轴于点 E F

(1)求抛物线的解析式;

(2)当点 M N 都在线段 AC 上时,连接 MF ,如果 sin AMF = 10 10 ,求点 Q 的坐标;

(3)在矩形的平移过程中,当以点 P Q M N 为顶点的四边形是平行四边形时,求点 M 的坐标.

来源:2016年四川省南充市中考数学试卷
  • 更新:2021-04-23
  • 题型:未知
  • 难度:未知

如图,在直角坐标系中,四边形 OABC 是平行四边形,经过 A ( - 2 , 0 ) B C 三点的抛物线 y = a x 2 + bx + 8 3 ( a < 0 ) x 轴的另一个交点为 D ,其顶点为 M ,对称轴与 x 轴交于点 E

(1)求这条抛物线对应的函数表达式;

(2)已知 R 是抛物线上的点,使得 ΔADR 的面积是 OABC 的面积的 3 4 ,求点 R 的坐标;

(3)已知 P 是抛物线对称轴上的点,满足在直线 MD 上存在唯一的点 Q ,使得 PQE = 45 ° ,求点 P 的坐标.

来源:2020年山东省淄博市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,点 O 为坐标原点,直线 l 与抛物线 y = m x 2 + nx 相交于 A ( 1 3 3 ) B ( 4 , 0 ) 两点.

(1)求出抛物线的解析式;

(2)在坐标轴上是否存在点 D ,使得 ΔABD 是以线段 AB 为斜边的直角三角形?若存在,求出点 D 的坐标;若不存在,说明理由;

(3)点 P 是线段 AB 上一动点,(点 P 不与点 A B 重合),过点 P PM / / OA ,交第一象限内的抛物线于点 M ,过点 M MC x 轴于点 C ,交 AB 于点 N ,若 ΔBCN ΔPMN 的面积 S ΔBCN S ΔPMN 满足 S ΔBCN = 2 S ΔPMN ,求出 MN NC 的值,并求出此时点 M 的坐标.

来源:2016年四川省泸州市中考数学试卷
  • 更新:2021-04-23
  • 题型:未知
  • 难度:未知

抛物线 y = a x 2 + bx + 3 经过点 A ( 1 , 0 ) 和点 B ( 5 , 0 )

(1)求该抛物线所对应的函数解析式;

(2)该抛物线与直线 y = 3 5 x + 3 相交于 C D 两点,点 P 是抛物线上的动点且位于 x 轴下方,直线 PM / / y 轴,分别与 x 轴和直线 CD 交于点 M N

①连接 PC PD ,如图1,在点 P 运动过程中, ΔPCD 的面积是否存在最大值?若存在,求出这个最大值;若不存在,说明理由;

②连接 PB ,过点 C CQ PM ,垂足为点 Q ,如图2,是否存在点 P ,使得 ΔCNQ ΔPBM 相似?若存在,求出满足条件的点 P 的坐标;若不存在,说明理由.

来源:2017年海南省中考数学试卷
  • 更新:2021-05-18
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,抛物线 y = a x 2 + bx - 4 ( a 0 ) x 轴交于点 A ( - 1 , 0 ) B ( 4 , 0 ) ,与 y 轴交于点 C

(1)求该抛物线的解析式;

(2)直线 l 为该抛物线的对称轴,点 D 与点 C 关于直线 l 对称,点 P 为直线 AD 下方抛物线上一动点,连接 PA PD ,求 ΔPAD 面积的最大值.

(3)在(2)的条件下,将抛物线 y = a x 2 + bx - 4 ( a 0 ) 沿射线 AD 平移 4 2 个单位,得到新的抛物线 y 1 ,点 E 为点 P 的对应点,点 F y 1 的对称轴上任意一点,在 y 1 上确定一点 G ,使得以点 D E F G 为顶点的四边形是平行四边形,写出所有符合条件的点 G 的坐标,并任选其中一个点的坐标,写出求解过程.

来源:2021年重庆市中考数学试卷(B卷)
  • 更新:2021-08-17
  • 题型:未知
  • 难度:未知

如图,已知抛物线 L : y = x 2 + bx + c 经过点 A ( 0 , - 5 ) B ( 5 , 0 )

(1)求 b c 的值;

(2)连结 AB ,交抛物线 L 的对称轴于点 M

①求点 M 的坐标;

②将抛物线 L 向左平移 m ( m > 0 ) 个单位得到抛物线 L 1 .过点 M MN / / y 轴,交抛物线 L 1 于点 N P 是抛物线 L 1 上一点,横坐标为 - 1 ,过点 P PE / / x 轴,交抛物线 L 于点 E ,点 E 在抛物线 L 对称轴的右侧.若 PE + MN = 10 ,求 m 的值.

来源:2021年浙江省丽水市中考数学试卷
  • 更新:2021-08-18
  • 题型:未知
  • 难度:未知

已知抛物线 y = a x 2 - 2 x + 1 ( a 0 ) 的对称轴为直线 x = 1

(1)求 a 的值;

(2)若点 M ( x 1 y 1 ) N ( x 2 y 2 ) 都在此抛物线上,且 - 1 < x 1 < 0 1 < x 2 < 2 .比较 y 1 y 2 的大小,并说明理由;

(3)设直线 y = m ( m > 0 ) 与抛物线 y = a x 2 - 2 x + 1 交于点 A B ,与抛物线 y = 3 ( x - 1 ) 2 交于点 C D ,求线段 AB 与线段 CD 的长度之比.

来源:2021年安徽省中考数学试卷
  • 更新:2021-08-18
  • 题型:未知
  • 难度:未知

二次函数 y = a x 2 + bx + 4 ( a 0 ) 的图象经过点 A ( 4 , 0 ) B ( 1 , 0 ) ,与 y 轴交于点 C ,点 P 为第二象限内抛物线上一点,连接 BP AC ,交于点 Q ,过点 P PD x 轴于点 D

(1)求二次函数的表达式;

(2)连接 BC ,当 DPB = 2 BCO 时,求直线 BP 的表达式;

(3)请判断: PQ QB 是否有最大值,如有请求出有最大值时点 P 的坐标,如没有请说明理由.

来源:2021年山东省泰安市中考数学试卷
  • 更新:2021-08-16
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,抛物线 C : y = a x 2 + bx + c ( a 0 ) 经过点 ( 1 , 1 ) ( 4 , 1 )

(1)求抛物线 C 的对称轴.

(2)当 a = - 1 时,将抛物线 C 向左平移2个单位,再向下平移1个单位,得到抛物线 C 1

①求抛物线 C 1 的解析式.

②设抛物线 C 1 x 轴交于 A B 两点(点 A 在点 B 的右侧),与 y 轴交于点 C ,连接 BC .点 D 为第一象限内抛物线 C 1 上一动点,过点 D DE OA 于点 E .设点 D 的横坐标为 m .是否存在点 D ,使得以点 O D E 为顶点的三角形与 ΔBOC 相似,若存在,求出 m 的值;若不存在,请说明理由.

来源:2021年湖南省邵阳市中考数学试卷
  • 更新:2021-08-21
  • 题型:未知
  • 难度:未知

已知:如图,一次函数 y = kx 1 的图象经过点 A ( 3 5 m ) ( m > 0 ) ,与 y 轴交于点 B .点 C 在线段 AB 上,且 BC = 2 AC ,过点 C x 轴的垂线,垂足为点 D .若 AC = CD

(1)求这个一次函数的表达式;

(2)已知一开口向下、以直线 CD 为对称轴的抛物线经过点 A ,它的顶点为 P ,若过点 P 且垂直于 AP 的直线与 x 轴的交点为 Q ( 4 5 5 0 ) ,求这条抛物线的函数表达式.

来源:2018年江苏省无锡市中考数学试卷
  • 更新:2021-05-25
  • 题型:未知
  • 难度:未知

如图1,抛物线 y = - x 2 + bx + c x 轴交于 A B 两点,与 y 轴交于点 C ,已知点 B 坐标为 ( 3 , 0 ) ,点 C 坐标为 ( 0 , 3 )

(1)求抛物线的表达式;

(2)点 P 为直线 BC 上方抛物线上的一个动点,当 ΔPBC 的面积最大时,求点 P 的坐标;

(3)如图2,点 M 为该抛物线的顶点,直线 MD x 轴于点 D ,在直线 MD 上是否存在点 N ,使点 N 到直线 MC 的距离等于点 N 到点 A 的距离?若存在,求出点 N 的坐标;若不存在,请说明理由.

来源:2020年四川省眉山市中考数学试卷
  • 更新:2021-05-21
  • 题型:未知
  • 难度:未知

如图1,已知一次函数 y = x + 3 的图象与 x 轴、 y 轴分别交于 A B 两点,抛物线 y = - x 2 + bx + c A B 两点,且与 x 轴交于另一点 C

(1)求 b c 的值;

(2)如图1,点 D AC 的中点,点 E 在线段 BD 上,且 BE = 2 ED ,连接 CE 并延长交抛物线于点 M ,求点 M 的坐标;

(3)将直线 AB 绕点 A 按逆时针方向旋转 15 ° 后交 y 轴于点 G ,连接 CG ,如图2, P ΔACG 内一点,连接 PA PC PG ,分别以 AP AG 为边,在他们的左侧作等边 ΔAPR ,等边 ΔAGQ ,连接 QR

①求证: PG = RQ

②求 PA + PC + PG 的最小值,并求出当 PA + PC + PG 取得最小值时点 P 的坐标.

来源:2016年江苏省盐城市中考数学试卷
  • 更新:2021-05-12
  • 题型:未知
  • 难度:未知

初中数学二次函数的性质试题