已知二次函数
(1)当 时,求这个二次函数的顶点坐标;
(2)求证:关于x的一元二次方程
有两个不相等的实数根;
(3)如图,该二次函数与x轴交于A、B两点(A点在B点的左侧),与y轴交于C点,P是y轴负半轴上一点,且 ,直线AP交BC于点Q,求证: .
如图,已知抛物线 的图象经过点 , ,与 轴交于点 ,抛物线的顶点为 ,对称轴与 轴相交于点 ,连接 .
(1)求抛物线的解析式.
(2)若点 在直线 上,当 时,求点 的坐标.
(3)在(2)的条件下,作 轴于 ,点 为 轴上一动点, 为直线 上一动点, 为抛物线上一动点,当以点 , , , 四点为顶点的四边形为正方形时,求点 的坐标.
如图①,直线 交于x轴于点A,交y轴于点C,过A、C两点的抛物线F1交x轴于另一点B(1,0).
(1)求抛物线F1所表示的二次函数的表达式;
(2)若点M是抛物线F1位于第二象限图象上的一点,设四边形MAOC和△BOC的面积分别为S四边形MAOC和S△BOC,记 ,求S最大时点M的坐标及S的最大值;
(3)如图②,将抛物线F1沿y轴翻折并“复制”得到抛物线F2,点A、B与(2)中所求的点M的对应点分别为A′、B′、M′,过点M′作M′E⊥x轴于点E,交直线A′C于点D,在x轴上是否存在点P,使得以A′、D、P为顶点的三角形与△AB′C相似?若存在,请求出点P的坐标;若不存在,请说明理由.
如图,抛物线 经过 , , 三点, 为直线 上方抛物线上一动点, 于 .
(1)求抛物线的函数表达式;
(2)如图1,求线段 长度的最大值;
(3)如图2,设 的中点为 ,连接 , ,是否存在点 ,使得 中有一个角与 相等?若存在,求点 的横坐标;若不存在,请说明理由.
如图,抛物线 (a、b、c为常数, )经过点A(﹣1,0),B(5,﹣6),C(6,0).
(1)求抛物线的解析式;
(2)如图,在直线AB下方的抛物线上是否存在点P使四边形PACB的面积最大?若存在,请求出点P的坐标;若不存在,请说明理由;
(3)若点Q为抛物线的对称轴上的一个动点,试指出△QAB为等腰三角形的点Q一共有几个?并请求出其中某一个点Q的坐标.
如图,抛物线 与 轴交于 , 两点,且 ,与 轴交于点 ,连接 ,抛物线对称轴为直线 , 为第一象限内抛物线上一动点,过点 作 于点 ,与 交于点 ,设点 的横坐标为 .
(1)求抛物线的表达式;
(2)当线段 的长度最大时,求 点的坐标;
(3)抛物线上是否存在点 ,使得以点 , , 为顶点的三角形与 相似?若存在,求出 的值;若不存在,请说明理由.
如图1,抛物线 过 、 两点,交 轴于点 ,过点 作 轴的平行线与抛物线上的另一个交点为 ,连接 、 .点 是该抛物线上一动点,设点 的横坐标为 .
(1)求该抛物线的表达式和 的正切值;
(2)如图2,若 ,求 的值;
(3)如图3,过点 、 的直线与 轴于点 ,过点 作 ,垂足为 ,直线 与 轴交于点 ,试判断四边形 的形状,并说明理由.
如图,在平面直角坐标系中,抛物线 与 轴交于点 , ,与 轴交于点 .
(1)求该抛物线的解析式;
(2)直线 为该抛物线的对称轴,点 与点 关于直线 对称,点 为直线 下方抛物线上一动点,连接 , ,求 面积的最大值.
(3)在(2)的条件下,将抛物线 沿射线 平移 个单位,得到新的抛物线 ,点 为点 的对应点,点 为 的对称轴上任意一点,在 上确定一点 ,使得以点 , , , 为顶点的四边形是平行四边形,写出所有符合条件的点 的坐标,并任选其中一个点的坐标,写出求解过程.
如图,已知抛物线 经过点 , .
(1)求 , 的值;
(2)连结 ,交抛物线 的对称轴于点 .
①求点 的坐标;
②将抛物线 向左平移 个单位得到抛物线 .过点 作 轴,交抛物线 于点 . 是抛物线 上一点,横坐标为 ,过点 作 轴,交抛物线 于点 ,点 在抛物线 对称轴的右侧.若 ,求 的值.
已知抛物线 的对称轴为直线 .
(1)求 的值;
(2)若点 , , , 都在此抛物线上,且 , .比较 与 的大小,并说明理由;
(3)设直线 与抛物线 交于点 、 ,与抛物线 交于点 , ,求线段 与线段 的长度之比.
二次函数 的图象经过点 , ,与 轴交于点 ,点 为第二象限内抛物线上一点,连接 、 ,交于点 ,过点 作 轴于点 .
(1)求二次函数的表达式;
(2)连接 ,当 时,求直线 的表达式;
(3)请判断: 是否有最大值,如有请求出有最大值时点 的坐标,如没有请说明理由.
如图,在平面直角坐标系中,抛物线 经过点 和 .
(1)求抛物线 的对称轴.
(2)当 时,将抛物线 向左平移2个单位,再向下平移1个单位,得到抛物线 .
①求抛物线 的解析式.
②设抛物线 与 轴交于 , 两点(点 在点 的右侧),与 轴交于点 ,连接 .点 为第一象限内抛物线 上一动点,过点 作 于点 .设点 的横坐标为 .是否存在点 ,使得以点 , , 为顶点的三角形与 相似,若存在,求出 的值;若不存在,请说明理由.
已知:如图,一次函数 的图象经过点 , ,与 轴交于点 .点 在线段 上,且 ,过点 作 轴的垂线,垂足为点 .若 .
(1)求这个一次函数的表达式;
(2)已知一开口向下、以直线 为对称轴的抛物线经过点 ,它的顶点为 ,若过点 且垂直于 的直线与 轴的交点为 , ,求这条抛物线的函数表达式.
如图1,抛物线 与 轴交于 、 两点,与 轴交于点 ,已知点 坐标为 ,点 坐标为 .
(1)求抛物线的表达式;
(2)点 为直线 上方抛物线上的一个动点,当 的面积最大时,求点 的坐标;
(3)如图2,点 为该抛物线的顶点,直线 轴于点 ,在直线 上是否存在点 ,使点 到直线 的距离等于点 到点 的距离?若存在,求出点 的坐标;若不存在,请说明理由.