已知抛物线 和直线 都经过点 ,点 为坐标原点,点 为抛物线上的动点,直线 与 轴、 轴分别交于 、 两点.
(1)求 、 的值;
(2)当 是以 为底边的等腰三角形时,求点 的坐标;
(3)满足(2)的条件时,求 的值.
如图,已知抛物线 与 轴交于点 和点 ,与 轴交于点 .
(1)求抛物线 的函数表达式及点 的坐标;
(2)点 为坐标平面内一点,若 ,求点 的坐标;
(3)在抛物线上是否存在点 ,使 ?若存在,求出满足条件的所有点 的坐标;若不存在,请说明理由.
如图,已知抛物线过点 , , .
(1)求抛物线的解析式;
(2)在图甲中,点 是抛物线 段上的一个动点,当图中阴影部分的面积最小值时,求点 的坐标;
(3)在图乙中,点 和点 关于抛物线的对称轴对称,点 在抛物线上,且 ,求点 的横坐标.
如图(1),在平面直角坐标系中,抛物线 与y轴交于点A,与x轴交于点 ,且经过点B(8,4),连接AB,BO,作 于点M,将 沿y轴翻折,点M的对应点为点N.解答下列问题:
(1)抛物线的解析式为 ,顶点坐标为 ;
(2)判断点N是否在直线AC上,并说明理由;
(3)如图(2),将图(1)中 沿着OB平移后,得到 .若DE边在线段OB上,点F在抛物线上,连接AF,求四边形 的面积.
抛物线 与 轴交于点 , 在 的左侧),与 轴交于点 .
(1)求直线 的解析式;
(2)抛物线的对称轴上存在点 ,使 ,利用图1求点 的坐标;
(3)点 在 轴右侧的抛物线上,利用图2比较 与 的大小,并说明理由.
抛物线 的顶点 , 关于 轴的对称点为 ,点 为抛物线与 轴的一个交点,点 关于原点 的对称点为 ;已知 为 的中点, 为抛物线上一动点,作 轴, 轴,垂足分别为 , .
(1)求点 的坐标及抛物线的解析式;
(2)当 时,是否存在点 使以点 , , , 为顶点的四边形是平行四边形?若存在,求出点 的坐标;若不存在,请说明理由.
如图,抛物线经过原点 ,点 ,点 .
(1)求抛物线解析式;
(2)连接 ,过点 作 交抛物线于 ,连接 ,求 的面积;
(3)点 是 轴右侧抛物线上一动点,连接 ,过点 作 交 轴于点 .问:是否存在点 ,使以点 , , 为顶点的三角形与(2)中的 相似,若存在,求出点 的坐标;若不存在,说明理由.
如图,在平面直角坐标系中,抛物线 与 轴交于点 , ,与 轴交于点 .
(1)求该抛物线的解析式;
(2)直线 为该抛物线的对称轴,点 与点 关于直线 对称,点 为直线 下方抛物线上一动点,连接 , ,求 面积的最大值.
(3)在(2)的条件下,将抛物线 沿射线 平移 个单位,得到新的抛物线 ,点 为点 的对应点,点 为 的对称轴上任意一点,在 上确定一点 ,使得以点 , , , 为顶点的四边形是平行四边形,写出所有符合条件的点 的坐标,并任选其中一个点的坐标,写出求解过程.
如图,已知抛物线 经过点 , .
(1)求 , 的值;
(2)连结 ,交抛物线 的对称轴于点 .
①求点 的坐标;
②将抛物线 向左平移 个单位得到抛物线 .过点 作 轴,交抛物线 于点 . 是抛物线 上一点,横坐标为 ,过点 作 轴,交抛物线 于点 ,点 在抛物线 对称轴的右侧.若 ,求 的值.
已知抛物线 的对称轴为直线 .
(1)求 的值;
(2)若点 , , , 都在此抛物线上,且 , .比较 与 的大小,并说明理由;
(3)设直线 与抛物线 交于点 、 ,与抛物线 交于点 , ,求线段 与线段 的长度之比.
二次函数 的图象经过点 , ,与 轴交于点 ,点 为第二象限内抛物线上一点,连接 、 ,交于点 ,过点 作 轴于点 .
(1)求二次函数的表达式;
(2)连接 ,当 时,求直线 的表达式;
(3)请判断: 是否有最大值,如有请求出有最大值时点 的坐标,如没有请说明理由.
如图,在平面直角坐标系中,抛物线 经过点 和 .
(1)求抛物线 的对称轴.
(2)当 时,将抛物线 向左平移2个单位,再向下平移1个单位,得到抛物线 .
①求抛物线 的解析式.
②设抛物线 与 轴交于 , 两点(点 在点 的右侧),与 轴交于点 ,连接 .点 为第一象限内抛物线 上一动点,过点 作 于点 .设点 的横坐标为 .是否存在点 ,使得以点 , , 为顶点的三角形与 相似,若存在,求出 的值;若不存在,请说明理由.
已知:如图,一次函数 的图象经过点 , ,与 轴交于点 .点 在线段 上,且 ,过点 作 轴的垂线,垂足为点 .若 .
(1)求这个一次函数的表达式;
(2)已知一开口向下、以直线 为对称轴的抛物线经过点 ,它的顶点为 ,若过点 且垂直于 的直线与 轴的交点为 , ,求这条抛物线的函数表达式.
如图1,抛物线 与 轴交于 、 两点,与 轴交于点 ,已知点 坐标为 ,点 坐标为 .
(1)求抛物线的表达式;
(2)点 为直线 上方抛物线上的一个动点,当 的面积最大时,求点 的坐标;
(3)如图2,点 为该抛物线的顶点,直线 轴于点 ,在直线 上是否存在点 ,使点 到直线 的距离等于点 到点 的距离?若存在,求出点 的坐标;若不存在,请说明理由.