抛物线 y = − x 2 + 2 x + 3 与 x 轴交于点 A , B ( A 在 B 的左侧),与 y 轴交于点 C .
(1)求直线 BC 的解析式;
(2)抛物线的对称轴上存在点 P ,使 ∠ APB = ∠ ABC ,利用图1求点 P 的坐标;
(3)点 Q 在 y 轴右侧的抛物线上,利用图2比较 ∠ OCQ 与 ∠ OCA 的大小,并说明理由.
如图,抛物线y=ax2+bx(a>0)与双曲线y=相交于点A,B.已知点B的坐标为(﹣2,﹣2),点A在第一象限内,且tan∠AOx=4.过点A作直线AC∥x轴,交抛物线于另一点C.(1)求双曲线和抛物线的解析式;(2)计算△ABC的面积;(3)在抛物线上是否存在点D,使△ABD的面积等于△ABC的面积.若存在,请你写出点D的坐标;若不存在,请你说明理由.
如图,在矩形ABCD中,AD=4,AB=m(m>4),点P是AB边上的任意一点(不与A、B重合),连结PD,过点P作PQ⊥PD,交直线BC于点Q.(1)当m=10时,是否存在点P使得点Q与点C重合?若存在,求出此时AP的长;若不存在,说明理由;(2)连结AC,若PQ∥AC,求线段BQ的长(用含m的代数式表示)(3)若△PQD为等腰三角形,求以P、Q、C、D为顶点的四边形的面积S与m之间的函数关系式,并写出m的取值范围.
如图,是的直径,为圆周上一点,,过点的切线与的延长线交于点.求证:(1);(2)≌.
刘大叔去年承包了10亩地种植甲、乙两种蔬菜,共获利18000元,其中甲种蔬菜每亩获利2000元,乙种蔬菜每亩获利1500元,刘大叔去年甲、乙两种蔬菜各种植了多少亩?
先化简,再求值:,其中x=cos60°.