如图,抛物线y=ax2+bx(a>0)与双曲线y=相交于点A,B.已知点B的坐标为(﹣2,﹣2),点A在第一象限内,且tan∠AOx=4.过点A作直线AC∥x轴,交抛物线于另一点C.(1)求双曲线和抛物线的解析式;(2)计算△ABC的面积;(3)在抛物线上是否存在点D,使△ABD的面积等于△ABC的面积.若存在,请你写出点D的坐标;若不存在,请你说明理由.
如图,在3×3的方阵图中,填写了一些数和代数式(其中每个代数式都表示一个数),使得每行的3个数、每列的3个数、斜对角的3个数之和均相等.(1)求x,y的值;(2)在备用图中完成此方阵图
如图,AB∥CD,AE交CD于点C,DE⊥AE,垂足为E,∠A=37º,求∠D的度数
解不等式:5x–12≤2(4x-3)
已知抛物线经过点A(,0)、B(m,0)(m>0),且与y轴交于点C. ⑴求a、b的值(用含m的式子表示)⑵如图所示,⊙M过A、B、C三点,求阴影部分扇形的面积S(用含m的式子表示);⑶在x轴上方,若抛物线上存在点P,使得以A、B、P为顶点的三角形与相似,求m的值.
已知△ABC ,D、E、F分别是AB、AC、BC上的点。且DE∥BC, EF∥AB.求证: