甲、乙两地同时生产某种蔬菜若干吨,现甲地可外销这种蔬菜10吨,乙地可外销这种蔬菜4吨,经调查A、B两城各需这种蔬菜分别为8吨和6吨.每吨这种蔬菜的运费如下表.设乙地运往B城的这种蔬菜为x吨.(1)用含x的代数式来表示总运费(单位:百元/吨);(2)若总运费为8400元,则乙地运往A城的这种蔬菜为多少吨?(3)试问有无可能总运费为7400元?若有可能,请写出相应的调动方案;若无可能,请说明理由.
某学校开展以素质提升为主题的研学活动,推出了以下四个项目供学生选择:.模拟驾驶;.军事竞技;.家乡导游;.植物识别.学校规定:每个学生都必须报名且只能选择其中一个项目.八年级(3)班班主任刘老师对全班学生选择的项目情况进行了统计,并绘制了如下两幅不完整的统计图.请结合统计图中的信息,解决下列问题:
(1)八年级(3)班学生总人数是 ,并将条形统计图补充完整;
(2)刘老师发现报名参加“植物识别”的学生中恰好有两名男生,现准备从这些学生中任意挑选两名担任活动记录员,请用列表或画树状图的方法,求恰好选中1名男生和1名女生担任活动记录员的概率.
如图,,的顶点,分别落在直线,上,交于点,平分.若,,求的度数.
如图,在平面直角坐标系中,点在抛物线上,且横坐标为1,点与点关于抛物线的对称轴对称,直线与轴交于点,点为抛物线的顶点,点的坐标为.
(1)求线段的长;
(2)点为线段上方抛物线上的任意一点,过点作的垂线交于点,点为轴上一点,当的面积最大时,求的最小值;
(3)在(2)中,取得最小值时,将绕点顺时针旋转后得到△,过点作的垂线与直线交于点,点为抛物线对称轴上的一点,在平面直角坐标系中是否存在点,使以点,,,为顶点的四边形为菱形,若存在,请直接写出点的坐标,若不存在,请说明理由.
对任意一个四位数,如果千位与十位上的数字之和为9,百位与个位上的数字之和也为9,则称为“极数”.
(1)请任意写出三个“极数”;并猜想任意一个“极数”是否是99的倍数,请说明理由;
(2)如果一个正整数是另一个正整数的平方,则称正整数是完全平方数.若四位数为“极数”,记,求满足是完全平方数的所有.
如图,在平行四边形中,点是对角线的中点,点是上一点,且,连接并延长交于点.过点作的垂线,垂足为,交于点.
(1)若,,求的面积;
(2)若,求证:.