如图,已知抛物线 y = x 2 + bx + c 的图象经过点 A ( 1 , 0 ) , B ( − 3 , 0 ) ,与 y 轴交于点 C ,抛物线的顶点为 D ,对称轴与 x 轴相交于点 E ,连接 BD .
(1)求抛物线的解析式.
(2)若点 P 在直线 BD 上,当 PE = PC 时,求点 P 的坐标.
(3)在(2)的条件下,作 PF ⊥ x 轴于 F ,点 M 为 x 轴上一动点, N 为直线 PF 上一动点, G 为抛物线上一动点,当以点 F , N , G , M 四点为顶点的四边形为正方形时,求点 M 的坐标.
某中学为了了解七年级学生的课外阅读情况,随机调查了该年级的25名学生,得到了他们上周双休日课外阅读时间(记为,单位:小时)的一组样本数据,其扇形统计图如图所示,其中表示与对应的学生数占被调查人数的百分比. (1)求与相对应的值; (2)试确定这组样本数据的中位数和众数; (3)请估计该校七年级学生上周双休日的平均课外阅读时间.
如图,在直角梯形纸片中,,,,将纸片沿过点的直线折叠,使点落在边上的点处,折痕为.连接并展开纸片. (1)求证:四边形是正方形; (2)取线段的中点,连接,如果,试说明四边形是等腰梯形.
如图,在平面直角坐标系中,点的坐标分别为. (1)请在图中画出,使得与关于点成中心对称; (2)若一个二次函数的图象经过(1)中的三个顶点,求此二次函数的关系式.
如图,内接于⊙O,为⊙O的直径,,,过点作⊙O的切线与的延长线交于点,求的长.
解方程:.