如图,抛物线 与 轴相交于 , 两点,与 轴相交于点 , , ,直线 是抛物线的对称轴,在直线 右侧的抛物线上有一动点 ,连接 , , , .
(1)求抛物线的函数表达式;
(2)若点 在 轴的下方,当 的面积是 时,求 的面积;
(3)在(2)的条件下,点 是 轴上一点,点 是抛物线上一动点,是否存在点 ,使得以点 , , , 为顶点,以 为一边的四边形是平行四边形,若存在,求出点 的坐标;若不存在,请说明理由.
如图1,抛物线 与 轴交于点 和点 ,与 轴交于点 ,抛物线 的顶点为 , 轴于点 .将抛物线 平移后得到顶点为 且对称轴为直线 的抛物线 .
(1)求抛物线 的解析式;
(2)如图2,在直线 上是否存在点 ,使 是等腰三角形?若存在,请求出所有点 的坐标;若不存在,请说明理由;
(3)点 为抛物线 上一动点,过点 作 轴的平行线交抛物线 于点 ,点 关于直线 的对称点为 ,若以 , , 为顶点的三角形与 全等,求直线 的解析式.
如图,二次函数 是实数,且 的图象与 轴交于 、 两点(点 在点 的左侧),其对称轴与 轴交于点 .已知点 位于第一象限,且在对称轴上, ,点 在 轴的正半轴上, ,连接 并延长交 轴于点 ,连接 .
(1)求 、 、 三点的坐标(用数字或含 的式子表示);
(2)已知点 在抛物线的对称轴上,当 的周长的最小值等于 时,求 的值.
如图1,在平面直角坐标系 中,已知点 和点 的坐标分别为 , ,将 绕点 按顺时针方向分别旋转 , 得到 △ , .抛物线 经过点 , , ;抛物线 经过点 , , .
(1)点 的坐标为 ,点 的坐标为 ;抛物线 的解析式为 .抛物线 的解析式为 ;
(2)如果点 是直线 上方抛物线 上的一个动点.
①若 时,求 点的坐标;
②如图2,过点 作 轴的垂线交直线 于点 ,交抛物线 于点 ,记 ,求 与 的函数关系式,当 时,求 的取值范围.
如图,抛物线的顶点为 ,与 轴交于点 ,点 为其对称轴上的一个定点.
(1)求这条抛物线的函数解析式;
(2)已知直线 是过点 且垂直于 轴的定直线,若抛物线上的任意一点 到直线 的距离为 ,求证: ;
(3)已知坐标平面内的点 ,请在抛物线上找一点 ,使 的周长最小,并求此时 周长的最小值及点 的坐标.
如图,直线 与 轴交于点 ,与 轴交于点 .抛物线 经过 、 两点,与 轴的另一个交点为 .
(1)求抛物线的解析式;
(2)点 是第一象限抛物线上的点,连接 交直线 于点 .设点 的横坐标为 , 与 的比值为 ,求 与 的函数关系式,并求出 与 的比值的最大值;
(3)点 是抛物线对称轴上的一动点,连接 、 ,设 外接圆的圆心为 ,当 的值最大时,求点 的坐标.
如图,在平面直角坐标系中,直线 与 轴交于点 ,与 轴交于点 ,抛物线 经过坐标原点和点 ,顶点为点 .
(1)求抛物线的关系式及点 的坐标;
(2)点 是直线 下方的抛物线上一动点,连接 , ,当 的面积等于 时,求 点的坐标;
(3)将直线 向下平移,得到过点 的直线 ,且与 轴负半轴交于点 ,取点 ,连接 ,求证: .
抛物线 经过点 ,与它的对称轴直线 交于点 .
(1)直接写出抛物线 的解析式;
(2)如图1,过定点的直线 与抛物线 交于点 、 .若 的面积等于1,求 的值;
(3)如图2,将抛物线 向上平移 个单位长度得到抛物线 ,抛物线 与 轴交于点 ,过点 作 轴的垂线交抛物线 于另一点 . 为抛物线 的对称轴与 轴的交点, 为线段 上一点.若 与 相似,并且符合条件的点 恰有2个,求 的值及相应点 的坐标.
已知直线 交 轴于点 ,交 轴于点 ,二次函数的图象过 , 两点,交 轴于另一点 , ,且对于该二次函数图象上的任意两点 , , , ,当 时,总有 .
(1)求二次函数的表达式;
(2)若直线 ,求证:当 时, ;
(3) 为线段 上不与端点重合的点,直线 过点 且交直线 于点 ,求 与 面积之和的最小值.
如图,在平面直角坐标系中,抛物线 与 轴交于点 , ,与 轴交于点 .
(1)求该抛物线的解析式;
(2)直线 为该抛物线的对称轴,点 与点 关于直线 对称,点 为直线 下方抛物线上一动点,连接 , ,求 面积的最大值.
(3)在(2)的条件下,将抛物线 沿射线 平移 个单位,得到新的抛物线 ,点 为点 的对应点,点 为 的对称轴上任意一点,在 上确定一点 ,使得以点 , , , 为顶点的四边形是平行四边形,写出所有符合条件的点 的坐标,并任选其中一个点的坐标,写出求解过程.
如图,已知抛物线 经过点 , .
(1)求 , 的值;
(2)连结 ,交抛物线 的对称轴于点 .
①求点 的坐标;
②将抛物线 向左平移 个单位得到抛物线 .过点 作 轴,交抛物线 于点 . 是抛物线 上一点,横坐标为 ,过点 作 轴,交抛物线 于点 ,点 在抛物线 对称轴的右侧.若 ,求 的值.
已知抛物线 的对称轴为直线 .
(1)求 的值;
(2)若点 , , , 都在此抛物线上,且 , .比较 与 的大小,并说明理由;
(3)设直线 与抛物线 交于点 、 ,与抛物线 交于点 , ,求线段 与线段 的长度之比.
二次函数 的图象经过点 , ,与 轴交于点 ,点 为第二象限内抛物线上一点,连接 、 ,交于点 ,过点 作 轴于点 .
(1)求二次函数的表达式;
(2)连接 ,当 时,求直线 的表达式;
(3)请判断: 是否有最大值,如有请求出有最大值时点 的坐标,如没有请说明理由.
如图,在平面直角坐标系中,抛物线 经过点 和 .
(1)求抛物线 的对称轴.
(2)当 时,将抛物线 向左平移2个单位,再向下平移1个单位,得到抛物线 .
①求抛物线 的解析式.
②设抛物线 与 轴交于 , 两点(点 在点 的右侧),与 轴交于点 ,连接 .点 为第一象限内抛物线 上一动点,过点 作 于点 .设点 的横坐标为 .是否存在点 ,使得以点 , , 为顶点的三角形与 相似,若存在,求出 的值;若不存在,请说明理由.