如图,抛物线经过原点 ,点 ,点 .
(1)求抛物线解析式;
(2)连接 ,过点 作 交抛物线于 ,连接 ,求 的面积;
(3)点 是 轴右侧抛物线上一动点,连接 ,过点 作 交 轴于点 .问:是否存在点 ,使以点 , , 为顶点的三角形与(2)中的 相似,若存在,求出点 的坐标;若不存在,说明理由.
如图,抛物线 与 轴交于 、 两点,与 轴交于点 ,对称轴 与 轴交于点 ,直线 ,点 是直线 上方抛物线上一动点,过点 作 ,垂足为 ,交 于点 ,连接 、 、 、 .
(1)抛物线的解析式为 ;
(2)当四边形 面积最大时,求点 的坐标;
(3)在(2)的条件下,连接 ,点 是 轴上一动点,在抛物线上是否存在点 ,使得以 、 、 、 为顶点,以 为一边的四边形是平行四边形.若存在,请直接写出点 的坐标;若不存在,说明理由.
如图,在平面直角坐标系中,抛物线 与 轴交于点 、 (点 在点 的左侧),与 轴交于点 , , .
(1)求 、 两点的坐标;
(2)求抛物线的解析式;
(3)点 、 分别是线段 、 上的动点,点 从点 出发以每秒 个单位的速度向点 运动,同时点 从点 出发以每秒2个单位的速度向点 运动,当点 、 中的一点到达终点时,两点同时停止运动.过点 作 轴于点 ,交抛物线于点 .设点 、点 的运动时间为 ,当 为多少时, 是等腰三角形?
如图,在直角坐标系中,四边形 是平行四边形,经过 , , 三点的抛物线 与 轴的另一个交点为 ,其顶点为 ,对称轴与 轴交于点 .
(1)求这条抛物线对应的函数表达式;
(2)已知 是抛物线上的点,使得 的面积是 的面积的 ,求点 的坐标;
(3)已知 是抛物线对称轴上的点,满足在直线 上存在唯一的点 ,使得 ,求点 的坐标.
如图,抛物线 与 轴交于 , 两点,与直线 交于 , 两点,直线 与抛物线的对称轴交于点 .
(1)求抛物线的解析式;
(2)若点 在直线 上方的抛物线上运动.
①点 在什么位置时, 的面积最大,求出此时点 的坐标;
②当点 与点 重合时,连接 ,将 补成矩形,使 上的两个顶点成为矩形一边的两个顶点,第三个顶点落在矩形这一边的对边上,求出矩形未知顶点的坐标.
已知抛物线 经过点 、 .
(1)求抛物线的解析式;
(2)若点 在直线 上,过点 作 轴于点 ,以 为斜边在其左侧作等腰直角三角形 .
①当 与 重合时,求 到抛物线对称轴的距离;
②若 在抛物线上,求 的坐标.
如图,已知抛物线 的图象经过点 , ,与 轴交于点 ,抛物线的顶点为 ,对称轴与 轴相交于点 ,连接 .
(1)求抛物线的解析式.
(2)若点 在直线 上,当 时,求点 的坐标.
(3)在(2)的条件下,作 轴于 ,点 为 轴上一动点, 为直线 上一动点, 为抛物线上一动点,当以点 , , , 四点为顶点的四边形为正方形时,求点 的坐标.
如图,抛物线 与 轴交于 , 两点,且 ,与 轴交于点 ,连接 ,抛物线对称轴为直线 , 为第一象限内抛物线上一动点,过点 作 于点 ,与 交于点 ,设点 的横坐标为 .
(1)求抛物线的表达式;
(2)当线段 的长度最大时,求 点的坐标;
(3)抛物线上是否存在点 ,使得以点 , , 为顶点的三角形与 相似?若存在,求出 的值;若不存在,请说明理由.
如图,在平面直角坐标系中,二次函数 的图象与 轴交于点 、 ,与 轴交于点 .
(1) , ;
(2)若点 在该二次函数的图象上,且 ,求点 的坐标;
(3)若点 是该二次函数图象上位于 轴上方的一点,且 ,写出点 的坐标.
如图,在平面直角坐标系中,抛物线 与 轴交于点 , ,与 轴交于点 .
(1)求该抛物线的解析式;
(2)直线 为该抛物线的对称轴,点 与点 关于直线 对称,点 为直线 下方抛物线上一动点,连接 , ,求 面积的最大值.
(3)在(2)的条件下,将抛物线 沿射线 平移 个单位,得到新的抛物线 ,点 为点 的对应点,点 为 的对称轴上任意一点,在 上确定一点 ,使得以点 , , , 为顶点的四边形是平行四边形,写出所有符合条件的点 的坐标,并任选其中一个点的坐标,写出求解过程.
如图,已知抛物线 经过点 , .
(1)求 , 的值;
(2)连结 ,交抛物线 的对称轴于点 .
①求点 的坐标;
②将抛物线 向左平移 个单位得到抛物线 .过点 作 轴,交抛物线 于点 . 是抛物线 上一点,横坐标为 ,过点 作 轴,交抛物线 于点 ,点 在抛物线 对称轴的右侧.若 ,求 的值.
已知抛物线 的对称轴为直线 .
(1)求 的值;
(2)若点 , , , 都在此抛物线上,且 , .比较 与 的大小,并说明理由;
(3)设直线 与抛物线 交于点 、 ,与抛物线 交于点 , ,求线段 与线段 的长度之比.
二次函数 的图象经过点 , ,与 轴交于点 ,点 为第二象限内抛物线上一点,连接 、 ,交于点 ,过点 作 轴于点 .
(1)求二次函数的表达式;
(2)连接 ,当 时,求直线 的表达式;
(3)请判断: 是否有最大值,如有请求出有最大值时点 的坐标,如没有请说明理由.
如图,在平面直角坐标系中,抛物线 经过点 和 .
(1)求抛物线 的对称轴.
(2)当 时,将抛物线 向左平移2个单位,再向下平移1个单位,得到抛物线 .
①求抛物线 的解析式.
②设抛物线 与 轴交于 , 两点(点 在点 的右侧),与 轴交于点 ,连接 .点 为第一象限内抛物线 上一动点,过点 作 于点 .设点 的横坐标为 .是否存在点 ,使得以点 , , 为顶点的三角形与 相似,若存在,求出 的值;若不存在,请说明理由.