初中数学

如图,抛物线经过原点 O ( 0 , 0 ) ,点 A ( 1 , 1 ) ,点 B ( 7 2 , 0 )

(1)求抛物线解析式;

(2)连接 OA ,过点 A AC OA 交抛物线于 C ,连接 OC ,求 ΔAOC 的面积;

(3)点 M y 轴右侧抛物线上一动点,连接 OM ,过点 M MN OM x 轴于点 N .问:是否存在点 M ,使以点 O M N 为顶点的三角形与(2)中的 ΔAOC 相似,若存在,求出点 M 的坐标;若不存在,说明理由.

来源:2018年四川省达州市中考数学试卷
  • 更新:2021-05-23
  • 题型:未知
  • 难度:未知

如图,抛物线 y = x 2 + bx + c x 轴交于 ( 3 , 0 ) B ( 1 , 0 ) 两点,与 y 轴交于点 C ,对称轴 l x 轴交于点 F ,直线 m / / AC ,点 E 是直线 AC 上方抛物线上一动点,过点 E EH m ,垂足为 H ,交 AC 于点 G ,连接 AE EC CH AH

(1)抛物线的解析式为   

(2)当四边形 AHCE 面积最大时,求点 E 的坐标;

(3)在(2)的条件下,连接 EF ,点 P x 轴上一动点,在抛物线上是否存在点 Q ,使得以 F E P Q 为顶点,以 EF 为一边的四边形是平行四边形.若存在,请直接写出点 Q 的坐标;若不存在,说明理由.

来源:2021年内蒙古赤峰市中考数学试卷
  • 更新:2021-08-19
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,抛物线 y = a x 2 + bx 2 x 轴交于点 A B (点 A 在点 B 的左侧),与 y 轴交于点 C ( 0 , 2 ) OB = 4 OA tan BCO = 2

(1)求 A B 两点的坐标;

(2)求抛物线的解析式;

(3)点 M N 分别是线段 BC AB 上的动点,点 M 从点 B 出发以每秒 5 2 个单位的速度向点 C 运动,同时点 N 从点 A 出发以每秒2个单位的速度向点 B 运动,当点 M N 中的一点到达终点时,两点同时停止运动.过点 M MP x 轴于点 E ,交抛物线于点 P .设点 M 、点 N 的运动时间为 t ( s ) ,当 t 为多少时, ΔPNE 是等腰三角形?

来源:2018年四川省巴中市中考数学试卷
  • 更新:2021-05-23
  • 题型:未知
  • 难度:未知

如图,在直角坐标系中,四边形 OABC 是平行四边形,经过 A ( - 2 , 0 ) B C 三点的抛物线 y = a x 2 + bx + 8 3 ( a < 0 ) x 轴的另一个交点为 D ,其顶点为 M ,对称轴与 x 轴交于点 E

(1)求这条抛物线对应的函数表达式;

(2)已知 R 是抛物线上的点,使得 ΔADR 的面积是 OABC 的面积的 3 4 ,求点 R 的坐标;

(3)已知 P 是抛物线对称轴上的点,满足在直线 MD 上存在唯一的点 Q ,使得 PQE = 45 ° ,求点 P 的坐标.

来源:2020年山东省淄博市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图,抛物线 y = a ( x + 1 ) 2 + 4 ( a 0 ) x 轴交于 A C 两点,与直线 y = x 1 交于 A B 两点,直线 AB 与抛物线的对称轴交于点 E

(1)求抛物线的解析式;

(2)若点 P 在直线 AB 上方的抛物线上运动.

①点 P 在什么位置时, ΔABP 的面积最大,求出此时点 P 的坐标;

②当点 P 与点 C 重合时,连接 PE ,将 ΔPEB 补成矩形,使 ΔPEB 上的两个顶点成为矩形一边的两个顶点,第三个顶点落在矩形这一边的对边上,求出矩形未知顶点的坐标.

来源:2017年四川省资阳市中考数学试卷
  • 更新:2021-05-23
  • 题型:未知
  • 难度:未知

已知抛物线 y = a x 2 + c ( a 0 ) 经过点 P ( 3 , 0 ) Q ( 1 , 4 )

(1)求抛物线的解析式;

(2)若点 A 在直线 PQ 上,过点 A AB x 轴于点 B ,以 AB 为斜边在其左侧作等腰直角三角形 ABC

①当 Q A 重合时,求 C 到抛物线对称轴的距离;

②若 C 在抛物线上,求 C 的坐标.

来源:2021年上海市中考数学试卷
  • 更新:2021-08-16
  • 题型:未知
  • 难度:未知

如图,已知抛物线 y = x 2 + bx + c 的图象经过点 A ( 1 , 0 ) B ( 3 , 0 ) ,与 y 轴交于点 C ,抛物线的顶点为 D ,对称轴与 x 轴相交于点 E ,连接 BD

(1)求抛物线的解析式.

(2)若点 P 在直线 BD 上,当 PE = PC 时,求点 P 的坐标.

(3)在(2)的条件下,作 PF x 轴于 F ,点 M x 轴上一动点, N 为直线 PF 上一动点, G 为抛物线上一动点,当以点 F N G M 四点为顶点的四边形为正方形时,求点 M 的坐标.

来源:2017年四川省雅安市中考数学试卷
  • 更新:2021-05-23
  • 题型:未知
  • 难度:未知

如图,抛物线 y = a x 2 + bx + 2 x 轴交于 A B 两点,且 OA = 2 OB ,与 y 轴交于点 C ,连接 BC ,抛物线对称轴为直线 x = 1 2 D 为第一象限内抛物线上一动点,过点 D DE OA 于点 E ,与 AC 交于点 F ,设点 D 的横坐标为 m

(1)求抛物线的表达式;

(2)当线段 DF 的长度最大时,求 D 点的坐标;

(3)抛物线上是否存在点 D ,使得以点 O D E 为顶点的三角形与 ΔBOC 相似?若存在,求出 m 的值;若不存在,请说明理由.

来源:2020年山东省烟台市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,二次函数 y = x 2 + bx + c 的图象与 x 轴交于点 A ( - 1 , 0 ) B ( 3 , 0 ) ,与 y 轴交于点 C

(1) b =    c =   

(2)若点 D 在该二次函数的图象上,且 S ΔABD = 2 S ΔABC ,求点 D 的坐标;

(3)若点 P 是该二次函数图象上位于 x 轴上方的一点,且 S ΔAPC = S ΔAPB ,写出点 P 的坐标.

来源:2021年江苏省扬州市中考数学试卷
  • 更新:2021-08-19
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,抛物线 y = a x 2 + bx - 4 ( a 0 ) x 轴交于点 A ( - 1 , 0 ) B ( 4 , 0 ) ,与 y 轴交于点 C

(1)求该抛物线的解析式;

(2)直线 l 为该抛物线的对称轴,点 D 与点 C 关于直线 l 对称,点 P 为直线 AD 下方抛物线上一动点,连接 PA PD ,求 ΔPAD 面积的最大值.

(3)在(2)的条件下,将抛物线 y = a x 2 + bx - 4 ( a 0 ) 沿射线 AD 平移 4 2 个单位,得到新的抛物线 y 1 ,点 E 为点 P 的对应点,点 F y 1 的对称轴上任意一点,在 y 1 上确定一点 G ,使得以点 D E F G 为顶点的四边形是平行四边形,写出所有符合条件的点 G 的坐标,并任选其中一个点的坐标,写出求解过程.

来源:2021年重庆市中考数学试卷(B卷)
  • 更新:2021-08-17
  • 题型:未知
  • 难度:未知

如图,已知抛物线 L : y = x 2 + bx + c 经过点 A ( 0 , - 5 ) B ( 5 , 0 )

(1)求 b c 的值;

(2)连结 AB ,交抛物线 L 的对称轴于点 M

①求点 M 的坐标;

②将抛物线 L 向左平移 m ( m > 0 ) 个单位得到抛物线 L 1 .过点 M MN / / y 轴,交抛物线 L 1 于点 N P 是抛物线 L 1 上一点,横坐标为 - 1 ,过点 P PE / / x 轴,交抛物线 L 于点 E ,点 E 在抛物线 L 对称轴的右侧.若 PE + MN = 10 ,求 m 的值.

来源:2021年浙江省丽水市中考数学试卷
  • 更新:2021-08-18
  • 题型:未知
  • 难度:未知

已知抛物线 y = a x 2 - 2 x + 1 ( a 0 ) 的对称轴为直线 x = 1

(1)求 a 的值;

(2)若点 M ( x 1 y 1 ) N ( x 2 y 2 ) 都在此抛物线上,且 - 1 < x 1 < 0 1 < x 2 < 2 .比较 y 1 y 2 的大小,并说明理由;

(3)设直线 y = m ( m > 0 ) 与抛物线 y = a x 2 - 2 x + 1 交于点 A B ,与抛物线 y = 3 ( x - 1 ) 2 交于点 C D ,求线段 AB 与线段 CD 的长度之比.

来源:2021年安徽省中考数学试卷
  • 更新:2021-08-18
  • 题型:未知
  • 难度:未知

二次函数 y = a x 2 + bx + 4 ( a 0 ) 的图象经过点 A ( 4 , 0 ) B ( 1 , 0 ) ,与 y 轴交于点 C ,点 P 为第二象限内抛物线上一点,连接 BP AC ,交于点 Q ,过点 P PD x 轴于点 D

(1)求二次函数的表达式;

(2)连接 BC ,当 DPB = 2 BCO 时,求直线 BP 的表达式;

(3)请判断: PQ QB 是否有最大值,如有请求出有最大值时点 P 的坐标,如没有请说明理由.

来源:2021年山东省泰安市中考数学试卷
  • 更新:2021-08-16
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,抛物线 C : y = a x 2 + bx + c ( a 0 ) 经过点 ( 1 , 1 ) ( 4 , 1 )

(1)求抛物线 C 的对称轴.

(2)当 a = - 1 时,将抛物线 C 向左平移2个单位,再向下平移1个单位,得到抛物线 C 1

①求抛物线 C 1 的解析式.

②设抛物线 C 1 x 轴交于 A B 两点(点 A 在点 B 的右侧),与 y 轴交于点 C ,连接 BC .点 D 为第一象限内抛物线 C 1 上一动点,过点 D DE OA 于点 E .设点 D 的横坐标为 m .是否存在点 D ,使得以点 O D E 为顶点的三角形与 ΔBOC 相似,若存在,求出 m 的值;若不存在,请说明理由.

来源:2021年湖南省邵阳市中考数学试卷
  • 更新:2021-08-21
  • 题型:未知
  • 难度:未知

已知:如图,一次函数 y = kx 1 的图象经过点 A ( 3 5 m ) ( m > 0 ) ,与 y 轴交于点 B .点 C 在线段 AB 上,且 BC = 2 AC ,过点 C x 轴的垂线,垂足为点 D .若 AC = CD

(1)求这个一次函数的表达式;

(2)已知一开口向下、以直线 CD 为对称轴的抛物线经过点 A ,它的顶点为 P ,若过点 P 且垂直于 AP 的直线与 x 轴的交点为 Q ( 4 5 5 0 ) ,求这条抛物线的函数表达式.

来源:2018年江苏省无锡市中考数学试卷
  • 更新:2021-05-25
  • 题型:未知
  • 难度:未知

初中数学二次函数的性质试题