如图,抛物线 y = a ( x + 1 ) 2 + 4 ( a ≠ 0 ) 与 x 轴交于 A , C 两点,与直线 y = x − 1 交于 A , B 两点,直线 AB 与抛物线的对称轴交于点 E .
(1)求抛物线的解析式;
(2)若点 P 在直线 AB 上方的抛物线上运动.
①点 P 在什么位置时, ΔABP 的面积最大,求出此时点 P 的坐标;
②当点 P 与点 C 重合时,连接 PE ,将 ΔPEB 补成矩形,使 ΔPEB 上的两个顶点成为矩形一边的两个顶点,第三个顶点落在矩形这一边的对边上,求出矩形未知顶点的坐标.
如图,在△OAB中,O为坐标原点,横、纵轴的单位长度相同,A、B的坐标分别为(8,6),(16,0),点P沿OA边从点O开始向终点A运动,速度每秒1个单位,点Q沿BO边从B点开始向终点O运动,速度每秒2个单位,如果P、Q同时出发,用t(秒)表示移动时间,当这两点中有一点到达自己的终点时,另一点也停止运动。 求(1)几秒时PQ∥AB (2)设△OPQ的面积为y,求y与t的函数关系式 (3)△OPQ与△OAB能否相似,若能,求出点P的坐标,若不能,试说明理由
一船在A处测得北偏东45°方向有一灯塔B,船向正东方向以每小时20海里的速度航行1.5小时到达C处时,又观测到灯塔B在北偏东15°方向上,求此时航船与灯塔相距多少海里
在1998年的特大洪水期间,为了加固一段大堤,需运来沙石和土将大堤堤面加宽1米,使背水坡的坡度由原来的1:2变为1:3,已知原来背水坡的坡长为BC=15米,堤长100米,那么需要的沙石和土多少方
某风景区集体门票的收费标准是:20人以内(含20人),每人25元;超过20人,超过部分每人10元 (1)写出应收门票费y(元)与游览人数x(人)之间的函数关系式 (2)利用(1)中的函数关系式计算,某班54人去该风景区旅游时,为购门票共花了多少元
如图,在△ABC和△ACD中,在什么条件下,△ABC和△ACD相似?并说明理由