如图, P 1、 P 2是反比例函数 在第一象限图象上的两点,点 A 1的坐标为(4,0).若△ P 1 OA 1与△ P 2 A 1 A 2均为等腰直角三角形,其中点 P 1、 P 2为直角顶点.
(1)求反比例函数的解析式.
(2)①求 P 2的坐标.
②根据图象直接写出在第一象限内当 x满足什么条件时,经过点 P 1、 P 2的一次函数的函数值大于反比例函数 的函数值.
如图所示,一次函数 与反比例函数 的图象交于 两点.
(1)分别求出一次函数与反比例函数的表达式;
(2)过点B作 轴,垂足为点C,连接AC,求△ACB的面积.
已知一次函数y=k1x+b与反比例函数 的图象交于第一象限内的P( ,8),Q(4,m)两点,与x轴交于A点.
(1)分别求出这两个函数的表达式;
(2)写出点P关于原点的对称点P'的坐标;
(3)求∠P'AO的正弦值.
如图,在平面直角坐标系xOy中,直线y=﹣x+3交y轴于点A,交反比例函数 的图象于点D, 的图象过矩形OABC的顶点B,矩形OABC的面积为4,连接OD.
(1)求反比例函数 的表达式;
(2)求△AOD的面积.
如图,直角三角板ABC放在平面直角坐标系中(AC过O点),直角边AB垂直x轴,垂足为Q,已知∠ACB=60°,点A,C,P均在反比例函数y=的图象上,分别作PF⊥x轴于F,AD⊥y轴于D,延长DA,FP交于点E,且点P为EF的中点.
(1)求点B的坐标;
(2)求四边形AOPE的面积.
已知反比例函数 y= 的图象在二四象限,一次函数为 y= kx+ b( b>0),直线 x=1与 x轴交于点 B,与直线 y= kx+ b交于点 A,直线 x=3与 x轴交于点 C,与直线 y= kx+ b交于点 D.
(1)若点 A, D都在第一象限,求证: b>﹣3 k;
(2)在(1)的条件下,设直线 y= kx+ b与 x轴交于点 E与 y轴交于点 F,当 = 且△ OFE的面积等于 时,求这个一次函数的解析式,并直接写出不等式 > kx+ b的解集.
如图,反比例函数 y= 与一次函数 y= k 2 x+ b的图象交于 A(2,4), B(﹣4, m)两点.
(1)求 k 1, k 2, b的值;
(2)求△ AOB的面积;
(3)若 M( x 1, y 1), N( x 2, y 2)是反比例函数 y= 的图象上的两点,且 x 1< x 2, y 1< y 2,指出点 M、 N各位于哪个象限.
已知自变量 与因变量 的对应关系如表呈现的规律.
|
|
|
|
0 |
1 |
2 |
|
|
|
12 |
11 |
10 |
9 |
8 |
|
(1)直接写出函数解析式及其图象与 轴和 轴的交点 , 的坐标;
(2)设反比例函数 的图象与(1)求得的函数的图象交于 , 两点, 为坐标原点且 ,求反比例函数解析式;已知 ,点 与 分别在反比例函数与(1)求得的函数的图象上,直接写出 与 的大小关系.
如图,在平面直角坐标系中, 为坐标原点,点 , 在函数 的图象上(点 的横坐标大于点 的横坐标),点 的坐标为 ,过点 作 轴于点 ,过点 作 轴于点 ,连接 , .
(1)求 的值.
(2)若 为 中点,求四边形 的面积.
如图,已知点 、 , ,点 为线段 上的一个动点,反比例函数 的图象经过点 .小明说:"点 从点 运动至点 的过程中, 值逐渐增大,当点 在点 位置时 值最小,在点 位置时 值最大."
(1)当 时.
①求线段 所在直线的函数表达式.
②你完全同意小明的说法吗?若完全同意,请说明理由;若不完全同意,也请说明理由,并求出正确的 的最小值和最大值.
(2)若小明的说法完全正确,求 的取值范围.
如图,正比例函数的图象与反比例函数的图象交于点.点为轴正半轴上一点,过作轴的垂线交反比例函数的图象于点,交正比例函数的图象于点.
(1)求的值及正比例函数的表达式;
(2)若,求的面积.
如图所示,的顶点在反比例函数的图象上,直线交轴于点,且点的纵坐标为5,过点、分别作轴的垂线、,垂足分别为点、,且.
(1)若点为线段的中点,求的值;
(2)若为等腰直角三角形,,其面积小于3.
①求证:;
②把称为,,,两点间的“距离”,记为,求,,的值.
如图,反比例函数 和一次函数 的图象都经过点 和点 .
(1) , ;
(2)求一次函数的解析式,并直接写出 时 的取值范围;
(3)若点 是反比例函数 的图象上一点,过点 作 轴,垂足为 ,则 的面积为 .
如图,已知一次函数 与反比例函数 的图象在第一、三象限分别交于 , 两点,连接 , .
(1)求一次函数和反比例函数的解析式;
(2) 的面积为 ;
(3)直接写出 时 的取值范围.
九年级某数学兴趣小组在学习了反比例函数的图象与性质后,进一步研究了函数 的图象与性质共探究过程如下:
(1)绘制函数图象,如图1.
列表:下表是 与 的几组对应值,其中 ;
|
|
|
|
|
|
|
1 |
2 |
3 |
|
|
|
|
1 |
2 |
4 |
4 |
2 |
|
|
|
描点:根据表中各组对应值 ,在平面直角坐标系中描出了各点;
连线:用平滑的曲线顺次连接各点,画出了部分图象.请你把图象补充完整;
(2)通过观察图1,写出该函数的两条性质;
① ;
② ;
(3)①观察发现:如图2.若直线 交函数 的图象于 , 两点,连接 ,过点 作 交 轴于 .则 ;
②探究思考:将①中"直线 "改为"直线 ",其他条件不变,则 ;
③类比猜想:若直线 交函数 的图象于 , 两点,连接 ,过点 作 交 轴于 ,则 .