如图,在平面直角坐标系中,矩形 的顶点 , 的坐标分别为 , .过点 的双曲线 与矩形 的边 交于点 .
(1)填空: , ,点 的坐标为 ;
(2)当 时,经过点 与点 的直线交 轴于点 ,点 是过 , 两点的抛物线 的顶点.
①当点 在双曲线 上时,求证:直线 与双曲线 没有公共点;
②当抛物线 与矩形 有且只有三个公共点,求 的值;
③当点 和点 随着 的变化同时向上运动时,求 的取值范围,并求在运动过程中直线 在四边形 中扫过的面积.
已知点 在双曲线 上且 ,过点 作 轴的垂线,垂足为 .
(1)如图1,当 时, 是 轴上的动点,将点 绕点 顺时针旋转 至点 .
①若 ,直接写出点 的坐标;
②若双曲线 经过点 ,求 的值.
(2)如图2,将图1中的双曲线 沿 轴折叠得到双曲线 ,将线段 绕点 旋转,点 刚好落在双曲线 上的点 处,求 和 的数量关系.
探究函数 与 的相关性质.
(1)小聪同学对函数 进行了如下列表、描点,请你帮他完成连线的步骤;观察图象可得它的最小值为 ,它的另一条性质为 ;
|
|
|
|
|
1 |
|
2 |
|
3 |
|
|
|
|
|
|
2 |
|
|
|
|
|
(2)请用配方法求函数 的最小值;
(3)猜想函数 的最小值为 .
如图,反比例函数 过点 ,直线 与 轴交于点 ,过点 作 轴的垂线 交反比例函数图象于点 .
(1)求 的值与 点的坐标;
(2)在平面内有点 ,使得以 , , , 四点为顶点的四边形为平行四边形,试写出符合条件的所有 点的坐标.
如图,直线 与反比例函数 的图象相交于 和 两点
(1)求 的值;
(2)直线 与直线 相交于点 ,与反比例函数的图象相交于点 .若 ,求 的值;
(3)直接写出不等式 的解集.
如图,平面直角坐标系中, 为原点,点 、 分别在 轴、 轴的正半轴上. 的两条外角平分线交于点 , 在反比例函数 的图象上. 的延长线交 轴于点 , 的延长线交 轴于点 ,连接 .
(1)求 的度数及点 的坐标;
(2)求 的面积;
(3) 的面积是否存在最大值?若存在,求出最大面积;若不存在,请说明理由.
已知一次函数 和反比例函数 .
(1)如图1,若 ,且函数 、 的图象都经过点 .
①求 , 的值;
②直接写出当 时 的范围;
(2)如图2,过点 作 轴的平行线 与函数 的图象相交于点 ,与反比例函数 的图象相交于点 .
①若 ,直线 与函数 的图象相交点 .当点 、 、 中的一点到另外两点的距离相等时,求 的值;
②过点 作 轴的平行线与函数 的图象相交于点 .当 的值取不大于1的任意实数时,点 、 间的距离与点 、 间的距离之和 始终是一个定值.求此时 的值及定值 .
如图,在平面直角坐标系 中,函数 的图象与函数 的图象相交于点 ,并与 轴交于点 .点 是线段 上一点, 与 的面积比为 .
(1) , ;
(2)求点 的坐标;
(3)若将 绕点 逆时针旋转,得到△ ,其中点 落在 轴负半轴上,判断点 是否落在函数 的图象上,并说明理由.
如图,在 中, , ,点 在 轴上,点 是 的中点,反比例函数 的图象经过点 、 .
(1)求 的值;
(2)求点 的坐标.
小明根据学习函数的经验,对函数 的图象与性质进行了探究.
下面是小明的探究过程,请补充完整:
(1)函数 的自变量 的取值范围是 .
(2)下表列出了 与 的几组对应值,请写出 , 的值: , ;
|
|
|
|
|
|
|
|
|
1 |
2 |
3 |
4 |
|
|
|
|
|
|
|
|
|
|
2 |
|
|
|
|
(3)如图,在平面直角坐标系 中,描出了以上表中各对对应值为坐标的点,根据描出的点,画出该函数的图象;
(4)结合函数的图象,请完成:
①当 时, .
②写出该函数的一条性质 .
③若方程 有两个不相等的实数根,则 的取值范围是 .
如图,反比例函数 的图象与一次函数 的图象交于 , 两点,点 的坐标为 ,点 的坐标为 .
(1)求反比例函数与一次函数的表达式;
(2)点 为 轴上一个动点,若 ,求点 的坐标.
如图, 的顶点 在坐标原点,点 在 轴上, , , ,反比例函数 的图象经过 的中点 ,交 于点 .
(1)求反比例函数的关系式;
(2)连接 ,求四边形 的面积.
如图1,一次函数 与反比例函数 的图象交于点 , ,与 轴交于点 ,直线 与反比例函数 的图象的另一支交于点 ,过点 作直线 垂直于 轴,点 是点 关于直线 的对称点.
(1) ;
(2)判断点 、 、 是否在同一条直线上,并说明理由;
(3)如图2,已知点 在 轴正半轴上, ,点 是反比例函数 的图象位于第一象限部分上的点(点 在点 的上方), ,则点 的坐标为 , .
如图,已知一次函数 的图象与 轴交于点 ,与反比例函数 的图象交于点 ,过点 作 轴于点 ,点 是该反比例函数图象上一点.
(1)求 的值;
(2)若 ,求一次函数 的表达式.