初中数学

设抛物线 y = x 2 + ( a + 1 ) x + a ,其中 a 为实数.

(1)若抛物线经过点 ( - 1 , m ) ,则 m =   

(2)将抛物线 y = x 2 + ( a + 1 ) x + a 向上平移2个单位,所得抛物线顶点的纵坐标的最大值是  

来源:2021年安徽省中考数学试卷
  • 更新:2021-08-18
  • 题型:未知
  • 难度:未知

ΔABC 中, ACB = 90 ° ,分别过点 B C BAC 平分线的垂线,垂足分别为点 D E BC 的中点是 M ,连接 CD MD ME .则下列结论错误的是 (    )

A.

CD = 2 ME

B.

ME / / AB

C.

BD = CD

D.

ME = MD

来源:2021年安徽省中考数学试卷
  • 更新:2021-08-18
  • 题型:未知
  • 难度:未知

如图,在菱形 ABCD 中, AB = 2 A = 120 ° ,过菱形 ABCD 的对称中心 O 分别作边 AB BC 的垂线,交各边于点 E F G H ,则四边形 EFGH 的周长为 (    )

A.

3 + 3

B.

2 + 2 3

C.

2 + 3

D.

1 + 2 3

来源:2021年安徽省中考数学试卷
  • 更新:2021-08-18
  • 题型:未知
  • 难度:未知

已知,在 ΔABC 中, BAC = 90 ° AB = AC

(1)如图1,已知点 D BC 边上, DAE = 90 ° AD = AE ,连结 CE .试探究 BD CE 的关系;

(2)如图2,已知点 D BC 下方, DAE = 90 ° AD = AE ,连结 CE .若 BD AD AB = 2 10 CE = 2 AD BC 于点 F ,求 AF 的长;

(3)如图3,已知点 D BC 下方,连结 AD BD CD .若 CBD = 30 ° BAD > 15 ° A B 2 = 6 A D 2 = 4 + 3 ,求 sin BCD 的值.

来源:2021年四川省资阳市中考数学试卷
  • 更新:2021-08-15
  • 题型:未知
  • 难度:未知

如图,在菱形 ABCD 中, BAD = 120 ° DE BC BC 的延长线于点 E .连结 AE BD 于点 F ,交 CD 于点 G FH CD 于点 H ,连结 CF .有下列结论:① AF = CF ;② A F 2 = EF FG ;③ FG : EG = 4 : 5 ;④ cos GFH = 3 21 14 .其中所有正确结论的序号为   

来源:2021年四川省资阳市中考数学试卷
  • 更新:2021-08-15
  • 题型:未知
  • 难度:未知

如图1, D O 上一点,点 C 在直径 BA 的延长线上,且 CDA = CBD

(1)判断直线 CD O 的位置关系,并说明理由;

(2)若 tan ADC = 1 2 AC = 2 ,求 O 的半径;

(3)如图2,在(2)的条件下, ADB 的平分线 DE O 于点 E ,交 AB 于点 F ,连结 BE .求 sin DBE 的值.

来源:2021年四川省宜宾市中考数学试卷
  • 更新:2021-08-15
  • 题型:未知
  • 难度:未知

如图,在矩形 ABCD 中, AD = 3 AB ,对角线相交于点 O ,动点 M 从点 B 向点 A 运动(到点 A 即停止),点 N AD 上一动点,且满足 MON = 90 ° ,连结 MN .在点 M N 运动过程中,则以下结论正确的是   .(写出所有正确结论的序号)

①点 M N 的运动速度不相等;

②存在某一时刻使 S ΔAMN = S ΔMON

S ΔAMN 逐渐减小;

M N 2 = B M 2 + D N 2

来源:2021年四川省宜宾市中考数学试卷
  • 更新:2021-08-15
  • 题型:未知
  • 难度:未知

如图,在 O 中, AB 是直径, CD 是弦, AB CD ,垂足为 P ,过点 D O 的切线与 AB 延长线交于点 E ,连接 CE

(1)求证: CE O 的切线;

(2)若 O 半径为3, CE = 4 ,求 sin DEC

来源:2021年四川省雅安市中考数学试卷
  • 更新:2021-08-15
  • 题型:未知
  • 难度:未知

如图,在矩形 ABCD 中, AC BD 相交于点 O ,过点 B BF AC 于点 M ,交 CD 于点 F ,过点 D DE / / BF AC 于点 N .交 AB 于点 E ,连接 FN EM .有下列结论:①四边形 NEMF 为平行四边形;② D N 2 = MC NC ;③ ΔDNF 为等边三角形;④当 AO = AD 时,四边形 DEBF 是菱形.其中,正确结论的序号   

来源:2021年四川省雅安市中考数学试卷
  • 更新:2021-08-15
  • 题型:未知
  • 难度:未知

如图, O 的半径为1,点 A O 的直径 BD 延长线上的一点, C O 上的一点, AD = CD A = 30 °

(1)求证:直线 AC O 的切线;

(2)求 ΔABC 的面积;

(3)点 E BND ̂ 上运动(不与 B D 重合),过点 C CE 的垂线,与 EB 的延长线交于点 F

①当点 E 运动到与点 C 关于直径 BD 对称时,求 CF 的长;

②当点 E 运动到什么位置时, CF 取到最大值,并求出此时 CF 的长.

来源:2021年四川省遂宁市中考数学试卷
  • 更新:2021-08-16
  • 题型:未知
  • 难度:未知

如图,正方形 ABCD 中,点 E CD 边上一点,连结 BE ,以 BE 为对角线作正方形 BGEF ,边 EF 与正方形 ABCD 的对角线 BD 相交于点 H ,连结 AF ,有以下五个结论:

ABF = DBE

ΔABF ΔDBE

AF BD

2 B G 2 = BH BD

⑤若 CE : DE = 1 : 3 ,则 BH : DH = 17 : 16

你认为其中正确是   .(填写序号)

来源:2021年四川省遂宁市中考数学试卷
  • 更新:2021-08-16
  • 题型:未知
  • 难度:未知

如图,点 E 在正方形 ABCD AD 上,点 F 是线段 AB 上的动点(不与点 A 重合), DF AC 于点 G GH AD 于点 H AB = 1 DE = 1 3

(1)求 tan ACE

(2)设 AF = x GH = y ,试探究 y x 的函数关系式(写出 x 的取值范围);

(3)当 ADF = ACE 时,判断 EG AC 的位置关系并说明理由.

来源:2021年四川省南充市中考数学试卷
  • 更新:2021-08-16
  • 题型:未知
  • 难度:未知

超市购进某种苹果,如果进价增加2元 / 千克要用300元;如果进价减少2元 / 千克,同样数量的苹果只用200元.

(1)求苹果的进价;

(2)如果购进这种苹果不超过100千克,就按原价购进;如果购进苹果超过100千克,超过部分购进价格减少2元 / 千克,写出购进苹果的支出 y (元 ) 与购进数量 x (千克)之间的函数关系式;

(3)超市一天购进苹果数量不超过300千克,且购进苹果当天全部销售完,据统计,销售单价 z (元 / 千克)与一天销售数量 x (千克)的关系为 z = - 1 100 x + 12 .在(2)的条件下,要使超市销售苹果利润 w (元 ) 最大,求一天购进苹果数量.(利润 = 销售收入 - 购进支出)

来源:2021年四川省南充市中考数学试卷
  • 更新:2021-08-16
  • 题型:未知
  • 难度:未知

如图,在矩形 ABCD 中, AB = 15 BC = 20 ,把边 AB 沿对角线 BD 平移,点 A ' B ' 分别对应点 A B 给出下列结论:

①顺次连接点 A ' B ' C D 的图形是平行四边形;

②点 C 到它关于直线 AA ' 的对称点的距离为48;

A ' C - B ' C 的最大值为15;

A ' C + B ' C 的最小值为 9 17

其中正确结论的个数是 (    )

A.

1个

B.

2个

C.

3个

D.

4个

来源:2021年四川省南充市中考数学试卷
  • 更新:2021-08-16
  • 题型:未知
  • 难度:未知

如图, ΔABC O 的内接三角形,过点 C O 的切线交 BA 的延长线于点 F AE O 的直径,连接 EC

(1)求证: ACF = B

(2)若 AB = BC AD BC 于点 D FC = 4 FA = 2 ,求 AD AE 的值.

来源:2021年四川省泸州市中考数学试卷
  • 更新:2021-08-16
  • 题型:未知
  • 难度:未知

初中数学试题